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Abstract

Recently, as quantum computing technology develops, the importance of quantum resis-
tant cryptography technology is increasing. AIMer is a quantum-resistant cryptographic
algorithm that was selected as the first candidate in the electronic signature section of the
KpqC Contest, and uses symmetric primitive AIM. In this paper, we propose a high-speed
implementation technique of symmetric primitive AIM and evaluate the performance of the
implementation. The proposed techniques are two methods, a Mer operation optimization
technique and a linear layer operation simplification technique, and as a result of perfor-
mance measurement, it achieved a performance improvement of up to 97.9% compared to
the existing reference code. This paper is the first study to optimize the implementation
of AIM.
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1 Introduction

As quantum computing technology, known as the next-generation computing environment,
develops, it can have high performance that surpasses existing supercomputers and can perform
complex operations that were previously impossible in polynomial time, so It is approaching
as a great threat to cryptography in the future. PQC (Post-Quantum Cryptography) [1] is
a next-generation cryptosystem differentiated from existing cryptosystems that rely on the
hardness of integer decomposition problems, and means a quantum-resistant cryptosystem.
The system is resistant to Shor Algorithm attacks [2] and is popular worldwide. Accordingly,
the National Institute of Standards and Technology (NIST) held a quantum-resistant encryption
standardization contest and selected a standard algorithm in 2022 [3]. Following this trend in
Korea, the KpqC (Korea Post-Quantum Cryptography) Contest was held. In December 2022,
9 digital signature algorithms and 7 public key algorithms passed Round 1. In this paper, we
propose a high-speed implementation of AIMer, one of the KpqC Round 1 candidate digital
signature algorithms.

2 Related Works

2.1 AIMer

AIMer digital signature algorithm was developed based on zero-knowledge [4], and is a signature
scheme using symmetric primitive AIM and BN++ proof system [5]. In the key generation
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process, public information (iv, ct) and private key pt that satisfy ct = AIM(pt, (iv, ct)) are
generated through security parameters. In the signature process, the signature σ is output
through the private key and public key pair (pt, (iv, ct)) and the message m. In the verification
process, Accept or Reject is output with the private key and public key pair (pt, (iv, ct)), message
m and signature σ as input. Basically, AIMer uses a power mapping based S-Box on a binary
extension field to improve cryptographic primitives. The AIMer development team focused most
on the method of calculating the Groebner basis of the ideal consisting of the most well-known
polynomials [6] and XL (eXtended Linearization) [7] defense against the attack of multivariate
polynomial systems. AIMer secured compatibility with MPCitH (Multi-Party Computation in
the Head) [8], which can calculate results without sharing data between participants by using a
one-way function structure. Also, the S-Box used internally is designed based on the Mersenne
S-Box. This makes AIMer resistant to algebraic attacks [9].

Q & APT

Mer (3)

Mer (27)

Linear
layer CTMer (5)

Figure 1: AIM cryptographic process.

2.2 AIM

AIM is a symmetric primitive proposed in AIMer. AIM is a one-way function designed to resist
algebraic attacks, and has compatibility to support secure multicomputation in hardware. Table
1 shows the parameters used by AIMer. There are three schemes of AIM, AIM-I, AIM-III, and
AIM-V, but only AIM-I is dealt with in this paper. AIM is designed with an S-box that
calculates powers by Mersenne numbers [10] and a linear layer that performs binary matrix
multiplication. Figure 1 shows the encryption process of AIM-I.
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Table 1: Parameters of AIM.

Scheme λ n l e1 e2 e3 e∗
AIM-I 128 128 2 3 27 - 5

AIM-III 192 192 2 5 29 - 7

AIM-V 256 256 3 3 53 7 5

3 Implementation Techniques

In this implementation, we propose a technique to reduce the cost by optimizing the operation
and simplifying the linear layer operation.

3.1 Mer operation optimization: Combined Mer

The first target of this optimization implementation is an operation performed on the initial,
input plaintext. In the case of AIM-I encryption, the same input value (pt) is copied and
operations Mer(3) and Mer(27) are performed, respectively. In this implementation, a sin-
gle Combined Mer operation is proposed instead of performing the operations Mer(3) and
Mer(27) separately. The proposed Combined Mer operation has the same complexity as per-
forming the operation of Mer(27) only once. The operation process of the Mer(3) function
can be seen in the code in listing 1.

1 void mersenne_exp_3(const GF in , GF out)

2 {

3 GF t1 = {0,};

4

5 // t1 = a ^ (2^2 - 1)

6 GF_sqr(in, t1);

7 GF_mul(t1, in, t1);

8

9 // out = a ^ (2^3 - 1)

10 GF_sqr(t1, t1);

11 GF_mul(t1, in, out);

12

13 }

14

Listing 1: Mer(3) operation source code.

In addition, you can check the contents of the Combined Mer operation function proposed
in the code of listing 2, and you can see that the operation process inside the Mer function is
included.

1 void mersenne_exp_27(const GF in, GF out , GF out2)

2 {

3 int i;

4 GF t1 = {0,};

5 //GF t2 = {0,};

6 GF t3 = {0,};

7

8 // t1 = a ^ (2^2 - 1)

9 GF_sqr(in, t1);

10 GF_mul(t1, in, t1);

11
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12 // t2 = a ^ (2^3 - 1)

13 GF_sqr(t1, t1);

14 GF_mul(t1, in, out2);

15

16 // t3 = a ^ (2^6 - 1)

17 GF_sqr(out2 , t1);

18 GF_sqr(t1, t1);

19 GF_sqr(t1, t1);

20 GF_mul(t1, out2 , t3);

21

22 // t3 = a ^ (2^12 - 1)

23 GF_sqr(t3, t1);

24 for (i = 1; i < 6; i++)

25 {

26 GF_sqr(t1, t1);

27 }

28 GF_mul(t1, t3, t3);

29

30 // t3 = a ^ (2^24 - 1)

31 GF_sqr(t3, t1);

32 for (i = 1; i < 12; i++)

33 {

34 GF_sqr(t1, t1);

35 }

36 GF_mul(t1, t3, t3);

37

38 // out = a ^ (2^27 - 1)

39 GF_sqr(t3, t1);

40 GF_sqr(t1, t1);

41 GF_sqr(t1, t1);

42 GF_mul(t1, out2 , out);

43 }

44

Listing 2: Combined Mer operation source code.

Mer(27) The parameters of the function consist of in, out, and out2, and represent state0 and
state1 arrays to store the input plaintext and operation results, respectively. The parameters of
Mer(3) are in and out, and represent the input plaintext and state0, respectively. Mer(3) The
result of the operation is stored in the out parameter state0, which is also used as a parameter of
the Mer(27) operation. Therefore, the same result can be obtained by performing the operation
Mer(3) inside the function Mer(27) without performing the operation Mer(3) and then storing
the result in state0. Operation Mer(27) of the existing reference code proceeded with the
operation by storing the operation result of Mer(3) in the t2 array for storing intermediate
operation values, but the proposed technique stores the result in the out2 which is parameter
state0, not in the t2 array.

3.2 Simplify linear layer operations

A lookup table means a set of pre-calculated results for an operation. Using this set, the result
value can be obtained faster than the time required for calculation [11]. AIM’s linear layer
operation performs a total of 4 matrix-vector multiplications and creates a 128*128 binary
matrix using the hash value (SHAKE-128) of the initial vector. When this matrix is created,
it is not affected by the plaintext, only by the initial vector value iv. Therefore, there is no
need to create a matrix each time encryption is performed. Therefore, we propose a method
of performing encryption after pre-creating the values of the corresponding four matrices using
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a lookup table. The lookup table is in the form of a two-dimensional array consisting of 128
two arrays each having a size of 64 bits. You can find the proposed lookup table source code
in listing 4 of the appendix, which represents the source code for one of the four matrices.

AIM’s linear layer consists of two types of linear components: affine layer and feed-forward.
The affine layer performs multiplication with derived matrix of matrix A, a random binary
matrix of n ∗ n size, and performs addition with V ectorB, a random constant affected by the
initial vector. In this technique, matrix A and vector B are not created because an affine layer
is not created. matrix A does not need to be created because it is necessary when constructing
the binary matrix specified in the lookup table. Since V ectorB performs an addition operation
with the state0 array before the Mer(5) operation, the corresponding value is required when
performing encryption. Accordingly, the value of V ectorB also needs to be specified in the form
of a constant.

1 vector_B [1] = 0x9347b8e12b0971a1;

2 vector_B [0] = 0xcaf99a30fa2d6733;

3 GF_add(state[0], state [1], state [0]);

4 GF_add(state[0], vector_B , state [0]);

Listing 3: Vector B and addition operation source code

In Listing 4, you can check the code that implements the linear layer operation simplification
technique by specifying the Vector B value without creating the linear layer. The proposed
technique can drastically reduce the encryption operation time by eliminating all costs consumed
in the linear layer generation operation.

4 Performance measurement and evaluation

The proposed technique was implemented using the Xcode 14.3 framework, and the reference
source code used was the code being distributed by AIMer [4]. However, the reference code
have a OpenSSL dependency. So, the code was modified in a stand alone format with the
dependency removed. The target processor is an Apple M2 processor running at a maximum
speed of 3.49 MHz. After repeating each algorithm 1,000,000 times, the average value of the
measured times was used, and the unit is millisecond(ms). The measurement results are shown
in Table 2.

Table 2: Performance measurement results.

Ref. Combined Mer Linear Layer Combined Mer + Linear Layer

ms 38482 38171 1268 1181

imprv(%) 0 0.91 97.6 97.9

It can be seen that the implementation of the proposed technique shows better performance
than the reference code, and in particular, it can be seen that the performance of the implemen-
tation to which the linear layer operation simplification is applied shows a big difference. In the
case of the implementation using only the Mer operation optimization technique, the perfor-
mance was improved by 0.81% compared to the reference code. The implementation using only
the linear layer operation simplification technique showed 96.7% improved performance, and
the implementation using both techniques showed 96.9% improved performance. The degree
of performance improvement of the implementation to which the Mer operation optimization
technique is applied is measured relatively low, which is considered to be due to the relatively
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low improvement rate measured because the cost consumed by the linear layer operation is too
large. As a result of comparing the implementation with only the linear layer simplification
technique and the implementation with both techniques applied, a performance improvement of
7.42% was confirmed. This means that the Mer operation optimization method also produced
significant results in cost reduction.

5 Conclusion

In this paper, a high-speed implementation of AIMer, one of the KpqC Round 1 candidate
algorithms, was performed. We proposed two techniques, CombinedMer, which is a Mer
operation optimization technique, and linear layer operation simplification, and showed up to
97.9% better performance than the reference code. In addition, it was confirmed that the Mer
operation optimization technique achieved significant performance improvement. Then, in order
to further improve the performance of this algorithm, an assembly optimization implementation
is performed on ARMv8 to derive additional performance improvement.
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7 Appendix

1 uint64_t state0_lower_tr [128][2] = {

2 {0x1, 0x0}, {0x2, 0x0}, {0x7 , 0x0}, {0x8 , 0x0}, {0x1b , 0x0}, {0x23 , 0x0

}, {0x65 , 0x0}, {0xbe , 0x0}, {0x1ea , 0x0}, {0x363 , 0x0}, {0x791 , 0x0}, {0

xfe9 , 0x0}, {0x1495 , 0x0}, {0x31a9 , 0x0}, {0x46df , 0x0}, {0xbc1c , 0x0}, {0

x183ea , 0x0}, {0x383c3 , 0x0}, {0x5c9eb , 0x0}, {0xff44d , 0x0}, {0x16dc2e , 0x0

}, {0x3d48cd , 0x0}, {0x756621 , 0x0}, {0xeb8633 , 0x0}, {0x18357a2 , 0x0}, {0

x21e4d45 , 0x0}, {0x6191ca7 , 0x0}, {0xda9edfd , 0x0}, {0x10972df1 , 0x0}, {0

x34ab3a98 , 0x0}, {0x585678db , 0x0}, {0xee8de9b8 , 0x0}, {0 x1b6ff58c3 , 0x0},

{0x2b955f709 , 0x0}, {0x7a53d18b1 , 0x0}, {0xd98dc3559 , 0x0}, {0 x1eee34a12c , 0

x0}, {0 x3e305db00b , 0x0}, {0 x61d058eeca , 0x0}, {0 x9815c483d0 , 0x0}, {0

x1cf953e85f6 , 0x0}, {0 x328863614ee , 0x0}, {0 x6ba4a07cae8 , 0x0}, {0

xcdc61bdfc2a , 0x0}, {0 x14f6375f3091 , 0x0}, {0 x3e3ea28c7856 , 0x0}, {0

x5af63fe90759 , 0x0}, {0 xf26d1388fc2e , 0x0}, {0 x14611e7d8a792 , 0x0}, {0

x28182058d910c , 0x0}, {0 x6eb3c6c2e834c , 0x0}, {0 x8462eaf1716d3 , 0x0}, {0

x11b84d2bdd622b , 0x0}, {0 x36ac12a1056c36 , 0x0}, {0 x78650fec38cdd3 , 0x0}, {0

xf3e0c7b9a5f8ea , 0x0}, {0 x151f47315add797 , 0x0}, {0 x249813356bff641 , 0x0},

{0 x6f125e4b879344d , 0x0}, {0 x8d57480cfbeb83d , 0x0}, {0 x1fa3270d7545daa9 , 0x0

}, {0 x234047f9dc57a00b , 0x0}, {0 x682a868ec31aae2a , 0x0}, {0 xe1d78f09a87b081f

, 0x0}, {0 xcab4840a68ca8db7 , 0x1}, {0 x4874a0719b867cce , 0x2}, {0

x270ac82bf2bd150f , 0x5}, {0 x5936831dcc91e5fb , 0x8}, {0 x18bf66f0fd39c999 , 0

x1d}, {0 x730d7506beb1b864 , 0x33}, {0 xdd1fa26c3607690c , 0x45}, {0

x8a93c90acc0d7e08 , 0xde}, {0 xf0e1988bdcdb0271 , 0x149}, {0 x63da59dab61737aa ,

0x3d1}, {0 x33fb3e194df62abb , 0x666}, {0 x7e66d2e6423945f9 , 0xa7b}, {0

x39eba14e8aeed580 , 0x13f8}, {0 x48918514babc960a , 0x32a0}, {0

xba3c0b700ea8bd15 , 0x5bf0}, {0 x3a1ad16056faab3c , 0xe982}, {0

x776c428a8ed28703 , 0x11d27}, {0 x3d5ad6035115667f , 0x36c5c}, {0

x5c4f698ef84d31bb , 0x6e5e3}, {0 x991d199498b1bca1 , 0xf7958}, {0

x9d402dcdb4c4cef8 , 0x1e68a7}, {0 xfc0f8e7c74205e14 , 0x2f5a16}, {0

xff70ad46a811c206 , 0x44d235}, {0 x8bfc8b1bc0ac4b3e , 0xf9b960}, {0

xc60648c57de85836 , 0x1e62d30}, {0 xec1381065d11d213 , 0x2f7c29b}, {0

xb3f1582a95e2a9f6 , 0x65eadee}, {0 xb8552b058e9c35cf , 0x9c0b700}, {0

x2d9de24fc597c0bf , 0x1eb63c9f}, {0 x60153809eed9c43f , 0x32667c4e}, {0

x6b0b783bf25750ee , 0x77aefee5}, {0 x91164c7665027a6c , 0x8f682670}, {0

x4f142006415b325f , 0x17f31a3de}, {0 xf600ae030f478e5 , 0x2077f518f}, {0

x6d439cabc916ddcd , 0x58620b140}, {0 x4dab212cbc076e9e , 0xb239d78f5}, {0

x6d3ed87ff3a75bbd , 0x1dbe443692}, {0 xff7fd8ba3068400d , 0x2cb6cb82a4}, {0

x70644b7d2c05333a , 0x5542096a0f}, {0 xc2bf86048b522d0b , 0xc6fcb97928}, {0

x53051f68065d47f , 0x15654445d63}, {0 x965229d408b067e9 , 0x23e9bdf33e0}, {0

xde1bfc4588a91825 , 0x65f33a7a687}, {0 xb390a6de9c90544f , 0xa3618b412bd}, {0

x27ff0ea4f71eec82 , 0x1c70f6f3ad11}, {0 x764634d8af97a7b3 , 0x3a1dbf89d2f2}, {0

x3a058f18ae17a8f7 , 0x4f4df6504a39}, {0 x64bbc52805567b7 , 0x82262f8cebe6}, {0

xef3acd344735e9b3 , 0x13e7916a367fd}, {0 xeee26c6de6756ea8 , 0x3d18a958511fc},

{0 x790a5b7c9e7777f2 , 0x4191e6080d0bd}, {0 x81a08eb8a3d81b0d , 0x8f858208e9630

}, {0 x845d43afdc0b5409 , 0x10082f05bcf5d9}, {0 x42c6ab960cbf9000 , 0

x2505f037d4521c}, {0 x83a4431e922f898d , 0x43dd4ecbe65126}, {0

xc94636296b9f9d5c , 0xa098c7ae0be674}, {0 x128b104e8032c714 , 0x1a24dc3050c3b9a

}, {0 xf4df6f12494d6329 , 0x2e5b2e9a667f55d}, {0 x3baac65368115806 , 0

x6432206732ea67d}, {0 x4a7d9f4b717853d5 , 0x89183b9005a247a}, {0

xe90463a993e75e58 , 0x12c70277dc8280c1}, {0 x9cc9d553a6f70252 , 0

x3a02a242c974cacb}, {0 xc6ab94d98d676c64 , 0x5812810cec0bbf3b}, {0
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x5dd04bf4dafda543 , 0xf992b0c6783c4b09}

3

4 };

5

6

Listing 4: source code of a lookup table for one of the four matrix.
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