
Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection

So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2∗

1 Department of Future Convergence Technology Engineering, Sungshin Women’s University
{220237020, 220224010, 220226036, iglee}@sungshin.ac.kr

2Department of Convergence Security Engineering, Sungshin Women’s University

Abstract

There has been a considerable rise in the use of the Internet of Things (IoT) in industrial
as well as domestic applications. The widespread use has raised concerns such as threats
against personal data, in addition to economic security threats. Conventionally, static
and dynamic analyses were used to detect malicious codes. However, in these methods,
real-time detection is difficult. In recent years, machine learning has been used to detect di-
verse types of malicious traffic efficiently, but it is difficult to process big data in lightweight
devices such as IoT-integrated devices, especially in machine-learning environments. Con-
sequently, a feature selection technique was used to reduce the computational costs and
enhance the performance of the learning model by removing less relevant or overlapped
features during the learning process. Conventional studies, however, primarily focused
on enhancing learning performance, without considering how to simultaneously optimize
learning performance and computational complexity issues in lightweight device environ-
ments. In this study, we propose a suboptimal feature selection model (SFSM), which
improves complexity while maintaining malicious traffic performance in IoT environments.
The SFSM optimizes the hyperparameters using a grid search technique that selects and
explores specific areas within a reduced range among all features. It was observed that
the detection accuracy improved by approximately 20% compared to the random model,
and the accuracy reduction rate was maintained to ensure security, contrary to the greedy
model. Meanwhile, the latency was reduced by approximately 96% and the complexity
was improved by 99.78% compared to that of the greedy model.

Keywords: Feature selection, Lightweight device, Machine learning, Malicious traffic

1 Introduction

The Internet of Things (IoT) has become an integral part of individuals’ daily lives and is
expected to have a significant impact on economic and commercial aspects in the forthcoming
years. According to the Internet of Things 2020 report released by Business Insider, the con-
tinuous growth of the IoT industry will be the driving force behind changes the environment
in all industries. The IoT market is expected to grow by more than $2.4 trillion annually by
2027 [1]. Further, more than 41 billion IoT devices are expected to be connected by 2027.

However, existing lightweight IoT technologies face challenges such as limited resources and
security vulnerabilities [2]. As the IoT technology becomes deeply embedded in daily personal
life, there are concerns that security threats can cause significant harm to personal information

The 7th International Conference on Mobile Internet Security (MobiSec’23), December 19-21, 2023, Okinawa, Japan
Article No. W-2

∗Corresponding author: Department of Future Convergence Technology Engineering, Sungshin Women’s
University, seoul, (02844), Republic of Korea, Tel. (+82) 02-920-7145

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

protection and the economy [3]. Security threats that result in malicious traffic or compromise
the confidentiality, integrity, and availability of systems through the distribution of malicious
codes remain a challenge in various fields, including IoT devices [4]. The typical detection
methods for malicious attacks include static and dynamic analyses, signature-based detection,
and behavior-based detection. Static analysis involves analyzing and detecting malicious codes
without executing them, whereas dynamic analysis entails directly executing malicious codes
and detecting abnormal behaviors through monitoring. The main advantage of static analysis
is the ability to analyze code without direct execution, which helps observe the structure of the
malicious code. However, this requires considerable time and expertise and has limitations in
terms of preemptive prevention. Conversely, dynamic analysis allows the observation of actual
operational processes and IP flows that cannot be discerned solely from the code. However, it
is resource-intensive and has the limitation that malicious codes can infect real computers [5].

The aforementioned conventional countermeasures are post-response methods because they
analyze malicious behavior after its occurrence, making it impossible to detect it in advance.
Signature-based detection involves creating databases of the behavioral patterns of malicious
code and classifying them as malicious if they match. This is the most widely used method
because it provides the best detection accuracy for previously identified malicious behavior.
However, it does not effectively respond to rapidly changing variants of malicious code or zero-
day attacks because it can only address previously occurring patterns of malicious code [6].
The behavior-based detection technique identifies malicious behavior when different behavior
patterns occur. It is designed to overcome the limitations of the aforementioned signature-
based detection techniques. Unlike signature-based detection methods that rely on databases,
the merit of behavior-based detection methods is that they can detect new attacks. However,
the category of normal behavior is quite broad, leading to a relatively high false-positive rate
compared to signature-based detection techniques. Consequently, conventional signature-based
and behavior-based detection techniques are not suitable for use in IoT devices with limited
resources because they rely on databases with established detection performance.

To address the limitations of conventional technologies, machine learning-based detection
technology has been actively studied for use in detecting malicious behaviors [7]. Machine
learning can recognize patterns and behaviors through data learning. However, it is not ideal
for IoT devices with limited resources. Therefore, recent studies have focused on reducing the
complexity of machine learning models or reducing the learning time to enable their use in
lightweight devices [8]. However, the use of a high-quality machine learning model requires a
vast dataset. In other words, it is difficult to store and learn extensive log datasets effectively
to detect malicious behavior in IoT environments. This paper proposes a suboptimal feature
selection model (SFSM) to efficiently detect malicious behavior in resource-limited IoT envi-
ronments, and it addresses the trade-off between detection performance and complexity that
conventional feature selection techniques do not consider. The SFSM conducts feature selec-
tion based on the importance of features and learning by thoroughly investigating feature sets.
During the feature selection process, the number of features subject to exhaustive search and
the data sampling ratio parameters were optimized in a suboptimal manner to maintain the
detection performance while reducing complexity.

The primary contributions of this paper are as follows:

• We propose a suboptimal method that reduces complexity while maintaining accuracy by
optimizing the parameters used in feature selection.

• The performance of the proposed SFSM was evaluated and compared with that of con-
ventional methods using detection accuracy, latency, and complexity evaluation metrics,

2

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

which are crucial in the IoT environment.

• By introducing a new lightweight detection model that enhances conventional feature
selection techniques, we improved the tradeoff between abnormal behavior detection per-
formance and resource complexity in IoT devices.

The remainder of this paper is organized as follows. Section 2 analyzes previous studies
on the detection of abnormal behavior in IoT environments. Section 3 explains the proposed
SFSM method. Section 4 details the experimental environment for evaluating the performance
of the SFSM and analyzes the experimental results. and Section 5 concludes the paper.

2 Related work

To enhance the security of IoT networks, it is essential to detect and block malicious traffic.
In recent years, machine-learning technology has been widely employed to accurately detect
and identify malicious attacks in IoT network environments. Machine learning can accurately
detect various behavioral patterns. However, a higher complexity is involved with this process,
compared to other detection methods [9]. The complexity of machine learning-based malicious
behavior detection technology is determined by the learning method and dataset. For instance,
in cases where there is significant overlapping data or features that are not related to the learning
objective, the computational complexity increases and the detection performance decreases
[10]. Therefore, it is important to extract and learn appropriate features to effectively detect
malicious traffic in IoT devices [9]. Further, an effective feature selection technology that
removes low-relation or overlapping features is important [10].

Table 1 presents the characteristics, contributions, and limitations of previous technologies
used to detect malicious behaviors in IoT environments.

As conventional methods were primarily focused on detecting malicious behavior without
the use of machine learning, there has been increasing research aimed at detecting malicious
behavior, emphasizing network behavior analysis in large networks [11, 12]. A previous study
[11] proposed a method for performing OWASP top 10 vulnerability-based static analysis for
IoT vulnerability analysis because static analysis is the most effective method for detecting
security vulnerabilities in IoT devices. However, this involves inspecting the API of IoT devices
after performing a static analysis. However, there are limitations in that expertise and resources
are required. Furthermore, it is not clear whether it has improved compared to conventional
technology mainly because performance verification and resource considerations have not been
made. A previous study [12] used static and dynamic analyses to extract features such as
function calls and traffic patterns from various malicious codes, and they compared them to
analyze the evolution of malicious codes. This prior study analyzed the spread trend of IoT
malicious code through large-scale network traffic analysis. However, it was difficult to detect
malicious traffic patterns that were still diverse compared to machine learning techniques. As
IoT environments possess limited resources, complex and resource-consuming detection methods
are not ideal given that they require lightweight protection mechanisms [16].

Another previous study [13] attempted to improve the complexity and proposed a Tabu
Search-Random Forest (TS-RF) feature selection technique aimed at reducing the dimension-
ality of high-dimensional data. The tabu search is a high-speed search method based on a
metaheuristic optimization algorithm. The solution fit of the neighboring features in the tabu
list was calculated and moved to the neighboring node with a higher fit. In this previous study
[13], ‘move’ refers to the creation of a neighbor node by randomly adding or deleting features

3

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

Table 1: Previous studies of malicious traffic detection method
Category Main focus Ref. Techniques Contribution Limitation

Non-machine
learning
detection
model

Static/
Dynamic
analysis

[11]
Proposed extension of
static analyzer to IoT
system

Introduced the expansion
direction of the static analyzer
through vulnerability analysis

Did not consider
resources

[12]
Used Static/Dynamic
analysis to extract
features

IoT malicious code spread
trends can be analyzed

- Poor performance
and less information
available than
machine learning
- Did not consider
resources

Machine
learning
detection
model

Reducing
complexity

[13]
Proposed Tabu Search-
Random Forest FS

- Reduced computational
complexity by reducing
feature space and vector
- Improved detection accuracy
even for attacks with a small
number of data samples

Because the tabu list
must be referenced
every time, a
reference delay
occurs as the number
of features increases

[14]
Estimated the importance
of features and select the
top k features

Improved learning
performance and shortened
learning time

- Insufficient basis for
selecting the
importance
threshold
- Did not consider
resource

[15]

- Feature selection based
on correlations
- Verified learning
performance with DNN
model in multiple
scenarios

Improved learning time and
calculated amount through
feature selection

Some datasets result
in poor performance

Improving
detection

performance

[16]
Lightweight signature
generation through multi-
level clustering

- Lightweight detection method
suitable for IoT environment
- Improved malware detection
rate through cluster merging

- Unable to detect new
malware
- Cluster merging
process takes a long
time

[17]

- Improved attack
detection rate over
standard WOA
- Reduced search space by
adding an intersection
operator

- Detected network attacks
with high accuracy
- Improvement of WOA’s
local optimization problem

High computational
complexity and time
delay due to GA
operators

[9]

- Effective feature set
filtering with Bijective
soft set
- Improved accuracy
using CAE and ACC
metrics together

- The first study using the Corr
ACC metric for botnet
identification attacks
- Performance measurement
for various machine learning
classifiers

Computational
complexity is not
considered when
reducing the number
of features

[18]

Built a malicious Android
application package
dataset for accurate
feature selection

- Shorter detection time
compared to commercial
anti-virus scanners
- High detection rate compared
to previous literature

It did not consider
limited resources

from the feature vector. However, when a predefined number of iterations is reached, improve-
ments cannot be attained after a certain number of iterations, or the objective function reaches
the required threshold. Subsequently, the search is stopped. In this study, to prevent local
optimization problems, recently explored solutions were stored in a tabu list, and each time a
solution was moved, the tabu list was used to prevent the next move. This study [13] reduced
the computational complexity by reducing the feature space and vector by more than 60% and
improved the detection accuracy, even in attacks with small data samples. However, because
the tabu list is referenced at every movement to prevent local optimization, the reference de-

4

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

lay may increase with the number of features. A recent study [14] focused on smartphones
using the Android operating system among IoT devices and proposed a general automated
classification framework for Android malware detection. The framework involves three main
steps—preprocessing the dataset, including feature selection, applying feature subset selection
methods, and proceeding with classification. At this time, feature subset selection methods
strengthen the training of the learning algorithm and improve the classification performance
using features that highly correlate with the purpose of classification. Accordingly, the impor-
tance of the extent to which the original dataset affected the classification was estimated, and
the top-k features were selected. The proposed method improves learning performance and
reduces the learning time. However, it has not been sufficiently considered and analyzed in
terms of resource usage, which is a critical evaluation metric in the IoT environment. A recent
study [15] addressed the problem of handling large and high-dimensional data in an IoT en-
vironment with limited resources. This study proposes a high-performance malware detection
system using deep learning and feature selection. The method proposed in this previous study
preprocesses the dataset and performs feature selection based on correlations. Subsequently,
the LSTM-based DNN model was learned, and its performance was evaluated in various sce-
narios by combining the presence or absence of the FS model, number of features, and various
machine learning models. A previous study [15] implemented a lightweight model for IoT de-
vices by minimizing the number of features and reducing the learning time and computation
by utilizing feature selection. However, as the number of features is reduced by more than half
on a Unix/Linux-based platform, the accuracy of the performance decreases, and the latency
is similar to that of a model that does not perform feature selection.

Previous research [16] focused on improving the detection performance and creating a
lightweight signature to overcome the resource constraints of IoT devices. It was assumed
that IoT malware is often simple, without obfuscation or evasion techniques, and it was argued
that the detection rate of IoT malware can be increased using a high-level code structure and
the string function capture method. The proposed mechanism is a multistage clustering tech-
nique that clusters IoT malware samples into several families using n-gram string functions.
They underwent coarse-grained, fine-grained, and cluster-merging processes. A combination of
the coarse- and fine-grained clustering can reduce the clustering calculation cost compared to
using only fine-grained clustering, and the malware detection rate can be improved through
cluster merging. This paper proposes a model that is suitable for IoT devices and improves the
malware detection rate by generating lightweight signatures. However, because it is difficult to
detect malware that has low similarity to conventional malware when detected based on the
similarity score, continuous IoT sample updates are required. Further, a major limitation is
that the cluster merging process requires significant time. A previous study [17] proposed the
Whale Optimization Algorithm (WOA), which improved the attack detection rate compared to
the standard WOA. Adding intersection and mutation operators to the standard WOA helps
improve the search space and prevents local optimization problems. The improved WOA des-
ignates a randomly selected feature from the initial dataset as the initial location and evaluates
the fitness of each feature subset using an SVM. The position of the whale is updated based on
the best feature subset, and the diversity of the solutions is increased through intersection and
mutation operators. This process was repeated several times to determine the most efficient
feature set, and the selected features were used as inputs for the attack-detection classifier.
The IDS wherein the WOA proposed in this previous study was integrated can detect network
attacks with high accuracy by selecting relevant features and overcoming the local optimization
problem of the WOA. However, the use of genetic algorithm (GA) operators increases com-
putational complexity and time delay, and the detection rate for classes with a small number

5

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

of datasets is low. Previous research [9] filtered features using a bijective softset to select an
effective feature set for botnet IoT attacks in IoT networks and improved the accuracy using
correlation attribute evaluation (CAE) and accuracy metrics. This study also constructed a cor-
relation table between features, performed union and intersection operations between columns
and rows, selected meaningful features, and assigned weights by ranking features using the
Pearson correlation coefficient. The method proposed in this study selected seven out of 39
features in the dataset and accurately identified traffic when using a decision tree and random
forest. This study is the first to use the Corr and ACC metrics to identify IoT botnet attacks
and measure the performance of various machine learning classifiers. However, their use in IoT
devices is limited because computational complexity is not considered in reducing the number of
features through feature selection. A previous research [18] attempted to build an effective An-
droid malware-detection model, arguing that correct feature selection affects malware-detection
performance. For this purpose, they collected Android application package files and determined
whether they were malicious based on the results of an antivirus scanner. In addition, they
constructed a dataset that extracts permissions and API calls. Subsequently, the final dataset
was created through feature selection and used as the input values to implement the least-
squares support vector machine (LS-SVM) model. The model proposed in this previous study
was compared with various antiviral scanners used in the market, and it was observed that it
reduced the time required for detection compared to conventional systems. The model showed
a 3% higher detection rate compared to models proposed in the literature. However, this study
did not analyze improvements related to limited resources or essential considerations for IoT
devices.

Thus, the static and dynamic analysis research that has not applied machine learning in
previous studies shows that it is inappropriate for application in an IoT environment with
limited resources because it requires specialized personnel and does not consider limitations in
support. However, existing studies that integrate machine learning aims to improve detection
performance or computational complexity and considers the resource-constrained environment
of IoT rather than non-machine learning detection models. Overall, the evaluation metrics
for limited resources have not been sufficiently considered, and the complexity and latency
increase with the introduction of machine learning models. In addition, it does not solve the
trade-off problem of lower performance when minimizing resource use. Therefore, research
on the tradeoff between detection performance and complexity is required to efficiently detect
malicious network traffic in resource-constrained IoT environments.

3 Proposed scheme

This section describes the feature search mechanism and the overall operation of the pro-
posed SFSM.

3.1 Search algorithm for feature selection

Feature selection is aimed at selecting a minimal representative feature subset from the
entire feature set. This approach removes redundant and irrelevant features from the dataset.
Determining the optimal subset of all features is challenging and is considered a combinatorial
NP-hard problem [19]. This section describes the search algorithms used in the feature selection
process.

The conventional exhaustive search method was a widely adopted conventional method for
finding an optimal feature set [13]. An exhaustive search examines all possible feature subsets

6

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

to determine the optimal features exactly; however, the search complexity is very high at 2n

[13, 20], where n represents the number of features. The greater the feature dimensions, the
more exponential the increase in the search complexity. This further leads to NP-hard problems
[13, 20]. In other words, the exhaustive search method is not suitable for the IoT environment
and has high computational complexity because it requires significant computational time and
memory to obtain an optimal solution [20]. To address this issue, search algorithms such as
random search and metaheuristics have emerged [13].

A random search can continuously generate subsets and thus improve the quality of the
selected features through repeated selection [19]. It also prevents local optimization problems
by introducing randomness into the search procedure [13]. In each step, the next subset was
randomly generated using the information collected in the previous step [19]. However, in the
worst-case scenario, we may need to explore all possible solutions, leading to problems that are
similar to those encountered in an exhaustive search [19].

The metaheuristic method is a general-purpose optimization technology that can deter-
mine the optimal solution in a reasonable time. Metaheuristic methods are divided into
single-solution-based (S-metaheuristics) and population-based (P-metaheuristics) methods [19].
The S-metaheuristics construct and iterate a single solution for improvement, whereas P-
metaheuristics generate multiple solutions in each iteration and improve them by selecting
the best available solution [13]. Metaheuristic techniques are characterized by their ability to
determine a reasonable solution without exploring the entire search space [20]. These tech-
niques probabilistically solve optimization problems with the randomness of random search,
and they are optimization processes that randomly explore and utilize search spaces at spe-
cific probabilities, starting with a random solution [21]. Metaheuristic techniques have been
widely utilized owing to excellent performance capability; however, increasing the dimensions
of the dataset can affect their performance [21]. Additionally, a reasonable solution does not
necessarily guarantee an optimal solution [20].

Conventional search methods are not suitable for lightweight IoT environments due to
high computational complexities. Furthermore, a consistently good performance is not al-
ways achieved because the derived feature set is not necessarily optimal. Therefore, this study
suggests the use of a grid search method, which is a lightweight search approach, for feature
selection while obtaining an optimal solution. A grid search involves selecting a combination of
feature sets that demonstrate optimal performance by exploring candidate values from the entire
set. This method addresses the complexity problem associated with efficient but highly complex
exhaustive search algorithms, in addition to the performance problem of random search, which
is efficient but lacks performance optimization.

3.2 Sub-optimal feature selection model

In this section, we describe the proposed SFSM. Fig.1 illustrates the overall operational
structure of the SFSM.

The SFSM operates in four phases—data preprocessing, input parameter optimization, fea-
ture selection, and attack classification. First, data preprocessing was conducted on the dataset
to derive the final features for selection. The input parameter optimization was then performed
on the preprocessed dataset. In the initial step of feature selection, the top k features are
selected from the entire feature set using permutation importance [22]. The permutation im-
portance ranks features based on their impact on the classification performance of the dataset.
Additionally, the SFSM employs data sampling to reduce computational complexity while en-
suring that the performance is not compromised. During this process, parameter optimization

7

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

Figure 1: Flowchart of SFSM

was performed to determine the optimal values of k and s. Here, k represents the number of
features considered in the exhaustive search and s represents the data sampling ratio. Initially,
k and s values were inputted, and the detection performance was evaluated by incrementally
adjusting each parameter. The detection performance results for each iteration were used to
calculate the gradient of the rate of increase in performance compared to the previous parameter
setting. When the gradient flattened, further parameter adjustments did not have a significant
impact on the performance. Therefore, the k and s parameters are selected at this point, and
feature selection proceeds based on these chosen values. Data were sampled according to the
s value, which is the data sampling ratio, and an exhaustive search was performed to find the
optimal r feature set from the k selected features. In essence, this process evaluates the detec-
tion accuracy performance for all possible feature sets kCr, and the feature set with the best
accuracy is chosen for subsequent learning. Fig. 2 illustrates the system configuration of the
SFSM.

Figure 2: System architecture of SFSM

8

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

As depicted in Fig. 2, the SFSM receives mixed traffic that comprises both normal and
malicious traffic from the receiver and aggregates it using a traffic collector. Subsequently,
the collected traffic data were preprocessed using the data preprocessor, and the optimized
parameters were selected using the parameter optimizer. The k and s parameters determined
using the parameter optimizer were applied to the dataset for an exhaustive search. The goal
was to identify the optimal feature set that exhibited the highest detection performance. This
selected feature set served as an input for the learning model, which was responsible for attack
classification.

4 Performance Evaluation

4.1 Experimental Environment

In this section, we describe the experimental environment used to demonstrate the per-
formance of the proposed SFSM. This experiment was modeled using Python3 in an Intel(R)
Core(TM) i9-10850K 3.60 GHz CPU in a 32.0 GB RAM environment. In addition, to implement
an environment wherein malicious traffic attacks occur, the UNSW-NB15 dataset [23] was used
and learned using a decision tree, which is a machine learning model. In this experiment, we
aimed to multi-classify one normal label and two attack labels, Benign, Exploits, and Generic,
which possess sufficient data. The Benign label refers to normal traffic, exploits refer to attacks
using vulnerabilities, and a generic label refers to attacks that infiltrate by bypassing the block
cipher. Table 2 lists the number of data points for each label and the number of data points
after preprocessing.

Table 2: Number of data points by label

Label
Number of data points

Before preprocessing After preprocessing
Benign 37,000 10,000
Exploits 11,132 10,000
Generic 18,871 10,000

The number of data points was balanced at 10,000 for each label. In addition, to preprocess
the dataset, ID and time information that were not related to the classification among the
features were deleted. In addition, the NaN and string data were preprocessed with zero
padding and one-hot encoding, respectively.

In this study, greedy and random models were implemented and evaluated as comparative
models of the SFSM. The greedy model [13] performs an exhaustive search that targets all
the features. The greedy model exhibits the most efficient detection performance because it
tests the performance of all possible feature combinations and selects the set with the best
performance. However, this model possesses an extremely large search complexity, 2n. A ran-
dom model [13], which performs a random search that targets all features, was implemented
randomly selecting r features from the entire feature set. The detection accuracy, latency, and
complexity were used as evaluation metrics to verify the SFSM performance. Detection accu-
racy is an evaluation metric that demonstrates whether malicious traffic has been accurately
classified, and it was calculated using Eq. 1.

Detection accuracy =
TP + TN

TP + TN + FP + FN
(1)

9

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

Latency measures the total time from the dataset preprocessing to the learning process. The
complexity was derived by defining an equation that calculates the amount of computation
based on the data size. Complexity was determined considering the complexity consumed in
the feature importance calculation and the complexity consumed in the exhaustive search pro-
cess, as shown in Eq. 2 [24]:

Complexity = kCr × l + n× l× s (2)

where k, r, l, n, and s are the number of exhaustive search target features, number of features
used when learning is performed, total number of data points, total number of features, and
data sampling ratio, respectively.

In this experiment, the performances of the three evaluation metrics were evaluated while
increasing r, and the gradient for selecting the k and s parameters of the SFSM was set to 0.005.

4.2 Evaluation results and analysis

In this section, to demonstrate the feasibility of the proposed SFSM, its performance is com-
pared with that of the comparative, greedy, and random models in terms of detection accuracy,
latency, and complexity. In addition, to prove that the k and s parameters can be optimized,
the detection performance was confirmed by increasing the number of features k and the data
sampling ratios. The detection performance as the number of features was increased for data
sampling ratios of 0.2, 0.5, and 0.8 was demonstrated. When the data sampling ratio was in-
creased, the detection performance was confirmed when the number of features k was 3, 5, or 7.
Fig. 3 shows the detection accuracy performance evaluation based on the number of features
and data sampling ratio.

Figure 3: Detection accuracy performance by parameters: (a) Number of feature; (b) Data
sampling ratio.

10

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

As shown in Fig. 3, when the number of features and the data sampling ratio were increased,
the rate of increase in the detection performance plateaued at a specific point. In addition, when
the number of features was increased, the rate of increase in detection performance plateaued
at a point where all three seconds values were similar. When the data sampling ratio increased,
the growth rate of the detection performance slope plateaued at the point where all three k
values were identical. This study determined the number of features and the data sampling
ratio based on a slope value of less than 0.005.

Accordingly, the proposed SFSM optimizes the selection of k and s values when the slope
of the detection performance growth rate plateaus as the k and s values increase. Fig. 4 shows
a comparison of the performances of the SFSM and conventional models.

Figure 4: Performance and complexity evaluation results of SFSM compared to conventional
models: (a) Detection accuracy; (b) Latency; (c) Complexity.

The detection accuracy indicated good results using the greedy, SFSM, and random models
in order. Due to the nature of the greedy model, which conducts an exhaustive search across
all features, the highest accuracy, in the range 90–95%, is obtained. In contrast, the random
model, which randomly selects features without considering their importance, proved to be
the least efficient in terms of accuracy. Furthermore, the greedy model is the least efficient in
terms of latency and complexity, which are two crucial evaluation metrics for IoT environments.
Specifically, the latency of the greedy model was approximately 69 times higher than that of
the SFSM, whereas the complexity was approximately 313 times more inefficient than that of
the SFSM.

Based on these findings, the SFSM demonstrated that it could minimize the tradeoff be-
tween these two metrics more efficiently compared to the greedy model. This was achieved
by significantly reducing latency and complexity, which are essential considerations in the IoT

11

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

environment, while incurring only a marginal loss in detection performance.

5 Conclusion

Machine-learning technology is widely used to identify and detect malicious traffic in IoT
network environments. However, the presence of irrelevant and overlapping features result in
an increase in the computational complexity and degrade machine-learning performance during
the learning process. Therefore, to address the complexity problem and enhance the detection
performance of machine learning, a feature selection approach that eliminates less relevant or
overlapping features is crucial. In this study, we propose an SFSM, which reduces the complexity
of the feature selection process for effective machine learning in IoT environments. During this
process, the SFSM determines the number of features to be considered and identifies suboptimal
sampling rate parameters. It utilizes an optimized feature set for learning through an exhaustive
search. The effectiveness of the SFSM in detecting malicious traffic in resource-constrained IoT
environments has been demonstrated. In this study, a single dataset with a fixed gradient
value is used. Future works may showcase the performance of the SFSM with a more diverse
range of datasets and optimize its capabilities by varying the gradients for selecting the k and
s parameters.

Acknowledgments

This work was partly supported by the Korea Institute for Advancement of Technology
(KIAT) grant funded by the Korean Government(MOTIE) (P0008703, The Competency De-
velopment Program for Industry Specialists), and MSIT under the ICAN (ICT Challenge and
Advanced Network of HRD) program (No. IITP-2022-RS-2022-00156310) supervised by the
Institute of Information & Communication Technology Planning and Evaluation (IITP).

References

[1] Insider Inc. The internet of things 2020: Here’s what over 400 iot decision-makers say about
the future of enterprise connectivity and how iot companies can use it to grow revenue. https:

//www.businessinsider.com/internet-of-things-report, 2020.

[2] Yun S. W., Park N. E., and Lee I. G. Wake-up security: Effective security improvement mechanism
for low power internet of things. Intelligent Automation Soft Computing, 37:2897–2917, 2023.

[3] Bagaa M., Taleb T., Bernabe J. B., and Skarmeta A. A machine learning security framework for
iot systems. IEEE Access, 8:114066–114077, 2020.

[4] Mohanta B. K., Jena D., Satapathy U., and Patnaik S. Survey on iot security: Challenges
and solution using machine learning, artificial intelligence and blockchain technology. Internet of
Things, 11, 2020.

[5] Ngo Q. D., Nguyen H. T., Le V. H., and Nguyen D. H. A survey of iot malware and detection
methods based on static features. ICT Express, 6:280–286, 2020.

[6] Khraisat A., Gondal I., Vamplew P., and Kamruzzaman J. Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity, 20, 2019.

[7] Al amri R., Murugesan R. K., Man M., Abdulateef A. F., Al-Sharaf M. A., and Alkahtani A.
A. A review of machine learning and deep learning techniques for anomaly detection in iot data.
Applied Sciences, 11, 2021.

12

https://www.businessinsider.com/internet-of-things-report
https://www.businessinsider.com/internet-of-things-report

Suboptimal Feature Selection Parameter Optimization

Scheme for Efficient Malicious Traffic Detection Jeon et al

[8] Mendonça R. V., Silva J. C., Rosa R. L., Saadi M., Rodriguez D. Z., and Farouk A. A lightweight
intelligent intrusion detection system for industrial internet of things using deep learning algo-
rithms. Expert Systems, 39(5), 2022.

[9] Shafiq M., Tian Z., Bashir A. K., Du X., and Guizani M. Iot malicious traffic identification using
wrapper-based feature selection mechanisms. Computers Security, 97, 2020.

[10] Sun G., Li J., Dai J., Song Z., and Lang F. Feature selection for iot based on maximal information
coefficient. Future Generation Computer Systems, 89:606–616, 2020.

[11] Ferrara P., Mandal A. K., Cortesi A., and Spoto F. Static analysis for discovering iot vulnerabili-
ties. International Journal on Software Tools for Technology Transfer, 23:71–88, 2020.

[12] Liu Z., Zhang L., Ni Q., Chen J., Wang R., Li Y., and He Y. An integrated architecture for
iot malware analysis and detection. IoT as a Service. 4th EAI International Conference (IoTaaS
2018), 271, 2018.

[13] Nazir A. and Khan R. A. A novel combinatorial optimization based feature selection method for
network intrusion detection. Computers Security, 102, 2021.

[14] Abawajy J., Darem A., and Alhashmi A. A. Feature subset selection for malware detection in
smart iot platforms. Sensors, 21(4), 2021.

[15] Alomari E. S., Nuiaa R. R., Alyasseri Z. A. A., Mohammed H. J., Sani N. S., Esa M. I., and
Musawi B. A. Malware detection using deep learning and correlation-based feature selection.
Symmetry, 15(1), 2023.

[16] Alhanahnah M., Lin Q., Yan Q., Zhang N., and Chen Z. Efficient signature generation for clas-
sifying cross-architecture iot malware. 2018 IEEE Conference on Communications and Network
Security (CNS), 2018.

[17] Vijayanand R. and Devaraj D. A novel feature selection method using whale optimization algo-
rithm and genetic operators for intrusion detection system in wireless mesh network. IEEE Access,
8, 2020.

[18] Mahindru A. and Sangal A. L. Fsdroid:- a feature selection technique to detect malware from
android using machine learning techniques. Multimedia Tools and Applications, 80:13271–13323,
2021.

[19] Taradeh M., Mafarja M., Heidari A. A., Faris H., Aljarah I., Mirjalili S., and Fujita H. An
evolutionary gravitational search-based feature selection. Information Sciences, 497:219–239, 2019.

[20] Al-Tashi Q., Kadir S. J. A., Rais H. M., Mirjalili S., and Alhussian H. Binary optimization using
hybrid grey wolf optimization for feature selection. IEEE Access, 7:39496–39508, 2019.

[21] Arora S., Singh H., Sharma M., Sharma S., and Anand P. A new hybrid algorithm based on grey
wolf optimization and crow search algorithm for unconstrained function optimization and feature
selection. IEEE Access, 7:26343–26361, 2019.

[22] Altmann A., Toloşi L., Sander O., and Lengauer T. Permutation importance: a corrected feature
importance measure. Bioinformatics, 26:1340–1347, 2010.

[23] Moustafa N. and Slay J. Unsw-nb15: a comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set). 2015 Military Communications and Information Systems
Conference (MilCIS), page 1–6, 2015.

[24] Jeon S. E., Oh Y. S., Kil Y. S., Lee Y. J., and Lee I. G. Two-step feature selection technique
for secure and lightweight internet of things. ICCCN (The 32nd International Conference on
Computer Communication and Networks), 2023.

13

	1 Introduction
	2 Related work
	3 Proposed scheme
	3.1 Search algorithm for feature selection
	3.2 Sub-optimal feature selection model

	4 Performance Evaluation
	4.1 Experimental Environment
	4.2 Evaluation results and analysis

	5 Conclusion
	References

