
Quantum implementation of Encoding algorithm for HQC

Yujin Oh, Sejin Lim, Kyungbae Jang, and Hwajeong Seo ∗

Hansung University
{oyj0922, dlatpwls834, starj1023, hwajeong84}@gmail.com

Abstract

Keywords: Quantum Circuit, HQC, code-based algorithm, Reed-Solomon algorithm.

1 Introduction

Quantum computers, leveraging the properties of superposition and entanglement, are expected
to bring significant advantages in fields such as machine learning, finance, and optimization due
to their exceptionally fast computational speeds. As the development of quantum computers
intensifies, active research is also underway in the field of quantum cryptanalysis. Quantum al-
gorithms for quantum cryptanalysis include the Grover algorithm[1] and the Shor algorithm[2].
The Grover algorithm reduces the complexity of symmetric key search to the square root.
Moreover, from the perspective of current public-key cryptography (e.g., RSA, ECC), Shor’s
algorithm, which operates on quantum computers, can solve mathematical problems such as fac-
torization and discrete logarithms—fundamental to the security of public-key cryptography—in
polynomial time. Therefore, it is anticipated that the security of existing cryptographic systems
is approaching a critical point with the advent of quantum computers. In preparation for the
quantum computing era, NIST is organizing a Post-Quantum Cryptography Standardization
competition to develop new public-key cryptography standards that can maintain security even
in the presence of quantum computers. In the quantum computing environment, it is crucial
to implement encryption as quantum circuits to assess the cryptographic strength[3, 4]. This
paper proposes a partial implementation of the encoding process for the PKE (Public Key En-
cryption) version of HQC (Hamming Quasi-Cyclic)[5], a fourth-round candidate algorithm in
NIST Post-Quantum Cryptography competition. We suggest the quantum circuit implementa-
tion for the necessary binary arithmetic and shortened Reed-Solomon[6] code operations during
the encoding process, along with estimating the required resources for this implementation.

The 7th International Conference on Mobile Internet Security (MobiSec’23), Dec. 19-21, 2023, Okinawa, Japan, Article No.W-1
∗Corresponding author: CryptoCraft Lab, Hansung University, 116, Samseongyo-ro 16-gil, Seongbuk-gu,

Seoul, Republic of Korea

As quantum computers continue to advance rapidly, the security of traditional public-key 
encryption systems, which rely on challenges like factorization and discrete logarithms, is 
being weakened and potentially compromised by the Shor algorithm’s ability to solve these 
problems in polynomial time. In anticipation of the quantum computing era, NIST has 
organized a competition to promote post-quantum cryptography, focusing on quantum- 
resistant algorithms to ensure secure encryption even in the presence of powerful quantum 
computers. In the quantum computing environment, analyzing encryption through quan- 
tum circuits is crucial for evaluating the security strength of cryptographic systems. This 
paper proposes a partial implementation of the encoding process for the PKE (Public Key 
Encryption) version of HQC (Hamming Quasi-Cyclic), a fourth-round candidate algorithm 
in NIST’s Post-Quantum Cryptography competition. Specifically, we focus on the imple- 
mentation of quantum circuits for key operations involving binary fie ld arithmetic and 
encoding operations using shortened Reed-Solomon codes. Additionally, we estimate the 
necessary quantum resources for this implementation.



Quantum implementation of Encoding algorithm for HQC Oh et al.

1.1 Our Contribution

Contributions of this paper are:

1. Quantum implementation of Binary Field Operations. We employ the method
presented in [7] to realize an optimized binary field multiplication, which is used in en-
coding of HQC.

2. Quantum implementation of the shortened Reed-Solomon and encoding algo-
rithm. We implement the encoding process of HQC. Additionally, we present for the
first time a quantum circuit of the Reed-Solomon algorithm used in encoding of HQC.

3. Quantum circuit cost estimation. We estimate the quantum resources required to
implement the circuit.

2 Background

2.1 HQC

HQC (Hamming Quasi-Cyclic) is a code-based cryptography that combines Hamming codes
with randomly generated Quasi-Cyclic codes. Code-based cryptography is based on the prin-
ciple of intentionally injecting errors into messages and allowing only users who are aware of
the errors to restore the message using error-correcting codes. This is based on the challenging
problem of syndrome decoding, which is NP-complete. Additionally, Quasi-Cyclic ensures that
certain relationships cycle within the matrix, optimizing operations. By utilizing this, it is pos-
sible to know the entire matrix by only storing the first row, efficiently reducing the key size.
Among the code-based encryption candidates in the fourth round, such as Classic McEliece,
BIKE, and HQC. HQC has larger parameters than BIKE but smaller parameters than Clas-
sic McEliece. While many code-based cryptography have vulnerabilities due to the process of
modifying the randomness of the Generator matrix, HQC uses the Generator matrix code as it
is publicly available, indicating that there are no issues with the code-based structure. This is
a distinctive and significant advantage of HQC.

The PKE version of HQC consists of three main processes: key generation (sk = (x, y)),
encryption (encoding) (ct = (u, v)), and decryption (decoding). In the key generation step,
a primitive polynomial in the binary field is (Xn − 1)/(X − 1), where q must be a prime
number. For instance, in the case of hqc-128, n is 17669, and when this is simplified, it becomes
(xn−1 + xn−2 + ...+ x+ 1), ultimately resulting in F217668/(x

17668 + x17667 + ...+ x+ 1) being
used.

Furthermore, in the encoding operation, which produces the ciphertext by multiplying the
message with the Generator matrix, a shortened Reed-Solomon code is utilized in the binary
field multiplication process. Here, the binary field size is 8, and the primitive polynomial of
F28/(x

8 + x4 + x3 + x2 + 1) is employed.

Due to the significant size of the error term introduced during encoding in HQC, decoding
on its own is not feasible. Only users possessing the private key can effectively perform decoding
by reducing the error term. Decoding may still fail depending on probability, but the authors
of the HQC paper have demonstrated through detailed and precise mathematical analysis that
the probability of failure is negligible. Therefore, HQC can be considered to provide a high
level of security.

2



Quantum implementation of Encoding algorithm for HQC Oh et al.

3 Proposed Method

Encoding is an operation that involves calculating u ←− r1 + h · r2 and v ←− m · G + s · r2 + e
for r1 and r2 existing in the same binary field. In this multiplication operation of m ·G, unlike
other operations, a shortened Reed-Solomon code is used.

In this paper, due to the imperfect implementation of u and v used as ciphertext, they are
separately implemented and the separated resources are estimated.

3.1 Implementation of Binary Field Operations

In encoding, addition and multiplication operations are performed in the binary field. For HQC-
128, operations are carried out in the binary field of F217668 . However, due to the limitations of
quantum simulation, we implement the quantum circuit by reducing the binary field to 12. The
primitive polynomial used here is for F212 . The XOR operation used in addition is implemented
in the quantum circuit with CNOT gates, allowing it to have a depth of 1 by using CNOT gates
equivalent to the field size. However, multiplication operations performed through AND and
XOR operations in binary field arithmetic have high computational complexity. In a binary
field of size, Schoolbook multiplication requires AND operations. In quantum circuits, AND
operations are implemented using Toffoli gates, which come with high implementation costs.
Therefore, several studies have been conducted to optimize multiplication operations in binary
field arithmetic [8, 9, 10, 7]. In this paper, we applied the most recent quantum multiplication
technique [7] that optimizes Toffoli-depth to 1, implementing binary field multiplication. This
multiplication technique recursively applies the Karatsuba algorithm [11], which reduces the
complexity of multiplication by performing additional additions, and optimizes Toffoli-depth to
1 regardless of the field size by removing dependencies between multiplication factors through
additional qubit allocation. This allows us to perform multiplication with a very small overall
depth. Compared to previous studies [8, 9, 10], it requires the most qubits, but it has the best
performance in terms of Toffoli gate count, Toffoli-depth, and Full-depth. Although there is
a trade-off relationship between the number of qubits and depth, for HQC, since operations
are performed in a very large binary field, the multiplication technique [7] with Toffoli-depth
always equal to 1 is the most suitable for this implementation, regardless of the field size.
Furthermore, the modular operation within the multiplication varies depending on the primitive
polynomial of the field (even for the same field, the primitive polynomial used may differ
depending on the encryption scheme). The binary arithmetic of HQC employs a primitive
polynomial (x11 + x10 + ... + x + 1)(Derived from (Xn − 1)/(X − 1)), making the modular
operation using it straightforward. The modular operation of multiplication in F212 is shown
in Algorithm 1.

Algorithm 1 Quantum circuit implementation of modular operation in multiplication.

Input: result[0 : 23]
Output: result[0 : 11]
1: for i = 0 to 12 do
2: result[i] ← CNOT(result[12], result[i])
3: end for
4: for i = 0 to 10 do
5: result[i] ← CNOT(result[13 + i], result[i])
6: end for
7: return result[0 : 11]

3



Quantum implementation of Encoding algorithm for HQC Oh et al.

Using these binary field arithmetic, we can calculate u ←− r1 + h · r2 and s · r2 + e of v.
The operation m · G involves more than simple multiplication, and one of the method used
for this operation is Shortened Reed-Solomon. Thus, we utilize arithmetic in the binary field
of partially F212 to implement the operation u ←− r1 + h · r2 and estimate the resources(Reed-
Solomon involves operations in the different field, which will be explained in Section 3.2).

3.2 Implementation of shortened Reed-Solomon

The encoding quantum circuit for the shortened Reed-Solomon code is identical to Algorithm
2. In this algorithm, the crucial operation involves binary field operations that multiply the
coefficient matrix of the publicly available RS-S1 polynomial by the message vector. The
constant values used in the algorithm are denoted asK = 16, G = 31, and N1 = 46 respectively.
The coefficients of the polynomial matrix are represented as qubit arrays (Line 1 and 2 in
Algorithm 2 ). Since only 30 out of 31 coefficients are utilized in the encoding operation,
calculations were performed up to G− 1.

The function Copy gate value(Line 7-9 in Algorithm 2) involves copying the gate value to
handle 30 subsequent binary field multiplications in parallel in the next step. The process
of copying values was divided into parallel segments, resulting in 29 parallelized value copy
operations. Therefore, we can optimize the depth in copy operations.

As a result, the binary field multiplication carried out is optimized with a Toffoli-depth of
1, utilizing the multiplication [7] (implementing Karatsuba algorithm recursively). Since this
operation is repeated a total of 16 times, the Toffoli-depth is 16. The variable tmp serves the
purpose of holding the result qubit, as the multiplication operation is implemented in-place.
Furthermore, to reuse the qubit array (copy[j]), we utilize the reverse operation (Line 19-21 in
Algorithm 2). The reverse operation employs only CNOT gates with minimal impact on full
depth, and even these are further parallelized, resulting in an even more negligible influence on
the full depth.

4 Performance

In this section, we will evaluate the quantum resources needed for our proposed quantum circuit.
We employed the quantum programming tool ProjectQ [9] for this purpose. Utilizing ProjectQ
enables us to verify the outcomes of our implemented quantum circuit and provides us with an
estimate of the necessary quantum resources.

Table 1 illustrates the quantum resource costs for the essential operations of addition and
multiplication, implemented in the binary field F28 of the Shortened Reed-Solomon algorithm
and F212 , which is the reduced binary field, respectively. In Table 1, By utilizing the multiplier
from [7], it can be observed that the Toffoli-depth remains 1 regardless of the binary field
size. Table 2 shows the quantum resources for implementing u ←− r1 + h · r2, which is the
one of being the ciphertext. In Table 2, both multiplication and addition are used only once.
Since we employ the approach mentioned in Section 3.1, the Toffoli depth is 1 during the
multiplication operation. Furthermore, the full depth is estimated to be the sum of the full
depth for both addition and multiplication as calculated in Table 1 (the same applies to the
number of CNOT gates). Table 3 presents the quantum resource costs of implementing the
shortened Reed-Solomon code using a quantum circuit. As explained earlier, it can be observed
that the implementation has optimized Toffoli-depth and depth, resulting in a lower depth
compared to the number of gates used.

4



Quantum implementation of Encoding algorithm for HQC Oh et al.

Algorithm 2 Quantum circuit implementation of shortened Reed-Solomon.

Input: 8-qubit array msg[K] , RS POLY [G − 1], cdw[N1], gate value, copy[G − 2], ancilla
qubits array ac[30]

Output: cdw
1: for i = 0 to G− 1 do
2: RS POLY [i]← CNOT8(RS COEFS,RS POLY [i])
3: end for
4: for i = 0 to K do
5: gate value[i]← CNOT8(cdw[N1−K − 1], gate value[i])
6: gate value[i]← CNOT8(msg[K − 1− i], gate value[i])
7: for j = 0 to G− 2 do
8: copy[j]← Copy gate value (gate value[i], copy[j])
9: end for

10: tmp[0]← Multiplication(gate value[i], RS POLY [0], ac[0])
11: for j = 1 to G− 1 do
12: tmp[j]← Multiplication(copy[i], RS POLY [j], ac[j])
13: end for
14: for j = N1−K − 1 to 0 do
15: cdw[j]← CNOT8(cdw[j − 1], cdw[j])
16: cdw[j]← CNOT8(tmp[j], cdw[j])
17: end for
18: cdw[0]← CNOT8(tmp[0], cdw[0])
19: for j = 0 to G− 2 do
20: copy[j]← Copy gate value (gate value[i], copy[j])
21: end for
22: end for
23: for i = 0 to K do
24: cdw[i]← CNOT8(msg[i], cdw[i+ 30])
25: end for
26: return cdw

Table 1: Required quantum resources for Binary Field Operations

Field Arithmetic Qubits #CNOT #Toffoli Toffoli depth Full depth

F28 Multiplication 81 164 27 1 26

F212
Addition 24 12 - - 1

Multiplication 162 495 54 1 32

5 Conclusion

In this paper, we propose a quantum circuit implementation for the core operations involving
binary field arithmetic and shortened Reed-Solomon code in the encoding process of the HQC
PKE version, a fourth-round candidate algorithm in the NIST competition. We also perform
resource estimation, with a focus on optimizing the multiplication operation in the binary field to
reduce the cost of quantum resources. Additionally, implementing the shortened Reed-Solomon
code in the quantum circuit using the parameters used in HQC and measuring the resources

5



Quantum implementation of Encoding algorithm for HQC Oh et al.

Table 2: Required quantum resources for implementing u←− r1 + h · r2

Field Operation Qubits #CNOT #Toffoli Toffoli depth Full depth

F212 u(r1 + h · r2) 174 507 54 1 33

Table 3: Required quantum resources for Shortened Reed-Solomon quantum circuit implemen-
tation

shortened Reed-Solomon Qubits #CNOT #Toffoli Toffoli depth Full depth

HQC-128 28,696 94,320 12,960 16 545

is significant. It is expected that the presented quantum circuit will contribute to the security
analysis of HQC. In the future, we plan to complete the encoding operations by implementing
not only Reed-Solomon codes but also other operations, and we will also implement the key
generation and decoding to complete the entire quantum circuit of HQC. Furthermore, we plan
to adjust the range for feasible simulations and expand the binary field to its maximum extent.

6 Acknowledgment

This work was supported by Institute for Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) (<Q|Crypton>, No.2019-0-
00033, Study on Quantum Security Evaluation of Cryptography based on Computational Quan-
tum Complexity, 75%) and this work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)
(No.2022-0-00627, Development of Lightweight BIoT technology for Highly Constrained De-
vices, 25%).

References

[1] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[2] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

[3] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. Improved
quantum circuits for elliptic curve discrete logarithms. In International Conference on Post-
Quantum Cryptography, pages 425–444. Springer, 2020.

[4] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter. Quantum resource
estimates for computing elliptic curve discrete logarithms. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 241–270. Springer, 2017.

[5] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and IC Bourges.
Hamming quasi-cyclic (hqc). NIST PQC Round 4, 2(4):13, 2018.

[6] Nicolas Aragon, Philippe Gaborit, and Gilles Zémor. Hqc-rmrs, an instantiation of the hqc
encryption framework with a more efficient auxiliary error-correcting code. arXiv preprint
arXiv:2005.10741, 2020.

6



Quantum implementation of Encoding algorithm for HQC Oh et al.

[7] Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, Yujin Yang, and Hwajeong Seo. Op-
timized implementation of quantum binary field multiplication with toffoli depth one. In Interna-
tional Conference on Information Security Applications, pages 251–264. Springer, 2022.

[8] Donny Cheung, Dmitri Maslov, Jimson Mathew, and Dhiraj K Pradhan. On the design and
optimization of a quantum polynomial-time attack on elliptic curve cryptography. In Theory of
Quantum Computation, Communication, and Cryptography: Third Workshop, TQC 2008 Tokyo,
Japan, January 30-February 1, 2008. Revised Selected Papers 3, pages 96–104. Springer, 2008.

[9] Shane Kepley and Rainer Steinwandt. Quantum circuits for f 2ˆ n f 2 n-multiplication with
subquadratic gate count. Quantum Information Processing, 14:2373–2386, 2015.

[10] Iggy Van Hoof. Space-efficient quantum multiplication of polynomials for binary finite fields with
sub-quadratic toffoli gate count. arXiv preprint arXiv:1910.02849, 2019.

[11] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In Soviet physics doklady,
volume 7, pages 595–596, 1963.

7


	1 Introduction
	1.1 Our Contribution

	2 Background
	2.1 HQC

	3 Proposed Method
	3.1 Implementation of Binary Field Operations
	3.2 Implementation of shortened Reed-Solomon

	4 Performance
	5 Conclusion
	6 Acknowledgment
	References

