
Poster: De-obfuscation System for Obfuscation Techniques

based on Trampoline Code

Gwangyeol Lee∗, Minho Kim, Jeong Hyun Yi, and Haehyun Cho

Soongsil University, Seoul, Korea
gwangyeal@gmail.com, mhkim37@soongsil.ac.kr, {jhyi,haehyun}@ssu.ac.kr,

Abstract

Security researchers work to analyze and counteract malware. However, attackers con-
tinuously attempt to evade these analyses, using obfuscation techniques. While previous
studies proposed many methodologies, they failed to address OEP obfuscation and API
obfuscation, resulting in unpacking failures. In this work, we propose an automatic de-
obfuscation system against OEP obfuscation and API obfuscation. Our system analyzes
the memory dump of packed programs, detects trampoline codes, and identifies obfuscated
data for the program reconstruction.

Keywords: OEP obfuscation, API obfuscation, De-obfuscation, Unpacking

1 Introduction

Malware remains a major threat, causing significant damage across servers, PCs, and mobile
devices [1]. While many methods exist for analyzing malware, attackers continually implement
to evade these techniques [2]. They often use packers to apply obfuscation techniques. Modern
packers protect code and data to complicate program analysis [3, 4]. They use trampoline code
to conceal the OEP (Original Entry Point) and IAT (Import Address Table). In this work,
we propose an effective de-obfuscation system targeting OEP obfuscation and API obfuscation
techniques.

2 Obfuscation Techniques

Obfuscation techniques restore protected data to memory at runtime using trampoline codes.
In this section, we introduce two main obfuscation techniques that leverage trampoline codes.

OEP obfuscation either positions a trampoline code at the OEP or modifies the runtime
stack to trigger it. API obfuscation links the trampoline code’s address in the IAT or modifies
the API call to trampoline code [5].

3 Proposed System

In this study, we aim to create an automated de-obfuscation system that detects, executes, and
analyzes trampoline codes, then patches the programs for unpacking. Specifically, we focus on
de-obfuscating the techniques discussed in section 2 to unpack obfuscated programs.

The 7th International Conference on Mobile Internet Security (MobiSec’23), Dec. 19-21, 2023, Okinawa, JAPAN, Article No.P-43
∗Corresponding author: Soongsil University, Seoul, 06978, Korea, Email: gwangyeal@gmail.com



De-obfuscation System for Obfuscation Techniques based on Trampoline Code Lee et al.

0110
1001
1010

Packed
PE File

Memory
Dumper

Anti-Analysis
Bypasser

OEP
Detector

DBI-based Execution Module Dump Files
OEP Candidates

Trampoline Codes

Context

101001 101101

Reg Stack

IAT

100000 100010

110000 110100 111000 111100
Heap PEB

Reg Stack

Heap PEB

Memory Static Analyzer

Unpacked
PE File

EXETrampoline 
Code Detector

Dump Files
OEP Candidates

Trampoline Codes

Context

101001 101101

Reg Stack

IAT

100000 100010

110000 110100 111000 111100
Heap PEB

Reg Stack

Heap PEB

Emulator-based Execution Module

OEP Obfuscation
Detector

API Obfuscation
Detector

Code Patcher

Figure 1: The overview of De-obfuscation System.

Figure 1 provides the overview of our system. It runs an obfuscated program to capture
in-memory data, identifies all trampoline codes, and independently executes them to deter-
mine their obfuscation purpose. The system then de-obfuscates and reconstructs the program,
ensuring a de-obfuscated OEP and Import Table.

4 Evaluation Results and Future Work

We evaluated our system using the sample program, obfuscated with Themida [3], VMPro-
tect [4], ASProtect [6], Enigma [7], and Obsidium [8]. The results are shown in Table 1. We
found that ASProtect and Obsidium don’t employ trampoline codes for OEP obfuscation, while
Themida does at the OEP. VMProtect and Enigma trigger the trampoline code post-OEP using
stack manipulation. For API obfuscation, all packers call trampoline code either directly or
indirectly. Despite ASProtect’s use of an argument-sensitive trampoline code, we identified the
obfuscated APIs. Our next step is to test our system against real-world obfuscated malware.

OEP obfuscation API obfuscation
Themida ✓ ✓
VMProtect △ ✓
ASProtect − ✓
Enigma △ ✓
Obsidium − ✓

Table 1: Comparison of De-obfuscation Results.

Acknowledgement: This work was supported by the National Research Foundation of Korea
(NRF) Grant through the Korean Government (MSIT) under Grant NRF-2021R1A4A1029650.

References

[1] AV-TEST. Statistics of malware. https://www.av-test.org/en/statistics/malware/, 2023.

[2] FireEye. M-trends 2020. https://content.fireeye.com/m-trends/rpt-m-trends-2020, 2020.

[3] Oreans Technologies. Themida. https://www.oreans.com/Themida.php, 2004–2022.

[4] VMProtect Software. VMProtect Software Protection. https://vmpsoft.com/, 2003–2022.

[5] B. Cheng, J. Ming, E. Leal, H. Zhang, J. Fu, G. Peng, and J. Marion. {Obfuscation-Resilient} exe-
cutable payload extraction from packed malware. In 30th USENIX Security Symposium (USENIX
Security 21), pages 3451–3468, 2021.

2

https://www.av-test.org/en/statistics/malware/
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://www.oreans.com/Themida.php
https://vmpsoft.com/


De-obfuscation System for Obfuscation Techniques based on Trampoline Code Lee et al.

[6] StartForge. ASProtect. http://www.aspack.com/asprotect32.html/, 2007–2022.

[7] The Enigma Protector. Enigma protector. https://enigmaprotector.com/, 2004–2022.

[8] Obsidium Software. Obsidium software protection system. https://www.obsidium.de/, 2022.

3

http://www.aspack.com/asprotect32.html/
https://enigmaprotector.com/
https://www.obsidium.de/

	1 Introduction
	2 Obfuscation Techniques
	3 Proposed System
	4 Evaluation Results and Future Work
	References

