
Research on a Generative Adversarial Network
Based Framework for Cyber Training Network

Generation
Dong-Wook KiM1, Gun-Yoon-Shin1, Younghoan Jang1, Seungjae Cho2,

Kwangsoo Kim2, Jaesik Kang2 and Myung-Mook Han1*

1 Department of AI Software, Gachon University, Seongnam-si, Republic of Korea.
{kog7306, jang0h}@naver.com, tlsrjsdbs@gmail.com,

mmhan@gachon.ac.kr
2 Cyber Electronic Warfare R&D, LIG Nex1, Seongnam-si, Republic of Korea.
{Seungjae.cho, jaesik.kang, kwangsoo.kim}@lignex1.com

Abstract
Cybersecurity is a crucial discipline that centers around safeguarding computer and
network systems against cyber threats. It is imperative to provide education and training
to tackle real-world cyber-attacks. Cyber training environments cater to this requisite by
simulating diverse cyber-attack and defense scenarios. However, creating and executing
tests, experiments, and training sessions for this objective demands immense resources
and effort. This study proposes a new approach to boost the effectiveness of
cybersecurity training, with a specific emphasis on applying GAN models to optimize
network topology. Our objective is to enhance the diversity and realism of training.
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1 Introduction
Cybersecurity is a crucial discipline that seeks to protect computer and network systems from

online threats. Institutions worldwide recognize the importance of cybersecurity education and
training to counter these risks. However, theoretical knowledge alone cannot fully secure systems in
real-world settings. Enhancing response capabilities during actual scenarios is urgently needed.
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Cybersecurity training environments offer a platform for simulating diverse cyber-attack and defense
scenarios. Nevertheless, the development and implementation of tests, experiments, and training
sessions in such environments require considerable resources and effort, mainly due to the need for
highly skilled professionals to ensure the training's effectiveness and precision.

The objective of Cyber Training is to cultivate skilled professionals and enhance their capacity to
address diverse cyber threats promptly and competently. Such proficiency empowers institutions and
organizations to proficiently mitigate the constant and advancing jeopardy of cybercriminals. The
simulation of realistic attack scenarios and diverse situations enables personnel to enhance their
technical skills and continually improve their abilities to solve problems, work together, and make
decisions. This training plays a vital role in boosting their capacity to respond effectively to urgent
situations in the field. Simultaneously, it helps in creating a more robust security framework for
professionals in the cybersecurity field.

The aim of this research is to propose a new approach to improve the efficiency and scope of
cybersecurity training. To address the constraints of repetitive training scenarios and to ensure trainees
are prepared to respond to diverse and realistic cyber threats, we present a methodology that generates
arbitrary network topologies and utilizes the GAN(Generative Adversarial Networks) model for
optimization. Our methodology aims to provide trainees with diverse experiences, preparing them for
a wide range of cyber threat situations. To address the constraints of repetitive training scenarios and
to ensure trainees are prepared to respond to diverse and realistic cyber threats, we present a
methodology that generates arbitrary network topologies and utilizes the GAN model for optimization.

Our methodology covers a range of processes spanning from creating network topologies to
learning the GAN model, assessing traffic distribution performance, and refining the model and
algorithm. The proposed methodology is set to enhance diversity and realism in cyber security
training. The proposed approach is expected to significantly improve trainees' response capabilities
and problem-solving skills, thereby enhancing the efficacy and efficiency of cyber security training.

2 Related Work
Constructing a cyber security training environment is a complex process where mistakes can occur

due to the prevalence of manual tasks. Therefore, numerous researchers devote their attention to
designing and building an infrastructure that can lead to more efficient cyber security training. To
meet the demands of the intricate nature of cyber security, which requires extensive work in varied
scenario modeling and network traffic creation, automation methodologies are currently being
researched. Studies are currently being conducted utilizing Software Defined Networking (SDN), a
programmable network technique, for network simulation (Keshari, Kansal, & Kumar, 2021).

In programmable network operation environments, efforts to automate the generation of realistic
data using semi-supervised methods of Generative Adversarial Deep Neural Networks are being made
to address security vulnerabilities of SDN (Ahmed & George, 2020). Additionally, there is an
increasing interest in using deep learning and generative models to produce realistic synthetic Wide
Area Networks (WAN) (Dietz, Seufert, & Hoßfeld, 2022). Artificial intelligence models can enhance
technology to automate cyber training. An automated cyber security training environment guarantees
consistent training, reduces human intervention during the training period, and simultaneously lowers
costs while maximizing efficiency.

Therefore, researchers are exploring software-defined networking and artificial intelligence
technologies to enhance the efficiency of cybersecurity education by automating cybersecurity training
environments. This approach leads to a significant reduction of costs and increase in effectiveness.
Therefore, researchers are exploring software-defined networking and artificial intelligence
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technologies to enhance the efficiency of cybersecurity education by automating cybersecurity
training environments.

3 Network Topology Framework Based on Generative
Adversarial Neural Networks

In this section, we introduce the step-by-step methodology for automatically generating network
topology based on generative adversarial neural networks to provide a variety of environments by
creating arbitrary network topologies, aiming to minimize repetitive cyber training networks.

3.1 Network topology and GAN
Based on an arbitrary network topology, during the distribution of actual traffic for generating

similar topologies, the structure of Generative Adversarial Networks (GAN) must satisfy the key
criteria between the generator G(z) and the discriminator D(x) according to the min-max game. The
generator utilizes topology information input based on an arbitrary noise distribution Pₓ(z) to create a
new network topology. In contrast, the discriminator evaluates the traffic distribution efficiency of this
created network topology and compares it with the traffic distribution of the actual topology. During
the learning process, the discriminator D aims to correctly identify the actual data by maximizing
logD(x) and to correctly reject the generated data by maximizing log(1-D(G(z))). The generator G, to
deceive the discriminator, maximizes D(G(z)), which is equivalent to minimizing log(1-D(G(z))).

Figure 1 : Proposed Framework

According to this functionality, Figure 1, illustrates that initially, the generator provides input
values of the characteristics of topologies of various sizes connected through random graph models,
such as bus, star, ring, mesh, and tree topologies, for constructing an arbitrary network topology. The
random graph model can utilize the Erdős–Rényi (ER) model (Lima, Sousa, & Sumuor, 2008) and the
Barabási–Albert (BA) model (Su, et al., 2014), and for regular topologies (Xia, Fan, & Hill, 2010) can
be applied. In this regard, the discriminator needs to be provided input values of the same size (nodes,
edges) as the actual network topology to differentiate. The generative model can learn the data
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distribution according to the characteristics of the input topology and provide approximate data. Since
it's difficult to deceive the discriminator with a topology generated with approximate characteristics,
the generator and discriminator are designed to balance according to the characteristics of the
distributed traffic.

3.2 Network Performance Metrics
When a similar network topology graph is generated in the creation model, traffic is distributed

across the topology to measure the amount of traffic occurring throughout the network. During this
process, the metrics measured include Latency (delay time) to gauge the quality of network
communication, delay time between packet transmissions, packet loss, and error rate to evaluate the
network's performance and reliability. The equations for each evaluation metric are as follows.

Latency  =  destinationt  - sourcet

Jitter= PacketDelayVariation(PDV)

Packet Loss Rate =  Number of Lost Packet
Total Sent packet  × 100%

Error Rate =  Number of Error Bits
Total Sent Bits  × 100%

In network communication, it is crucial to comprehend and measure performance objectively
(Vasilev, Leguay, Paris, Maggi, & Debbah, 2018). An indispensable measure of such performance is
Latency, which quantifies the time duration for a packet to journey from source to destination.
Essentially, lower latency denotes faster data transit, which is of critical importance in real-time
applications, where even slight delays can have deleterious effects. The complementary concept of
Jitter is also noteworthy. Jitter measures the inconsistency of packet delay when received at the
destination. It results from variance in time within packets arriving, caused by network congestion,
timing drift, or other network anomalies. The Packet Loss Rate is another essential metric that
indicates the network's reliability. This metric demonstrates the percentage of packets that fail to reach
their intended destination. Elevated packet loss rates may indicate network congestion, signal
degradation, or other anomalies that could negatively affect the user experience. Finally, the Error
Rate provides information on the data's integrity during transmission. This metric measures the
portion of transmitted bits that were received with errors. Increased error rates could indicate
degraded link quality, which often leads to retransmissions and reduced network efficiency.

These metrics are essential in assessing network performance and reliability. Depending on the
network environment and its needs, various Quality of Service (QoS) indicators may be critical. The
discriminator utilizes these metrics' attributes to compare and classify bandwidth on a real-life
network topology, in line with the traffic flowing through the available network topology. Through
this categorization, we implement structures that are appropriate for our instructional network
situations.

3.3 Network topology Embedding
Network topology embedding aims to represent graph representations as low-dimensional vectors.

This enables prediction tasks, node classification, knowledge graph representation, visualization,
clustering, etc. through network analysis. For network topology embedding, there are node embedding
and edge embedding methods based on nodes and edges for graph features (Wang, et al., 2022). In
this section, we present only node embeddings for network topology embeddings. Node embedding is
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a process in which each node of a given graph is passed through an arbitrary encoder and transformed
into a vector located in the embedding space. The goal is to encode nodes so that their similarity in the
embedding space is like their similarity in the original graph network. There are approaches based on
adjacency, distance, path, and random walk, and the random walk of node2vec (Grover & Leskovec,
2016) is well known (Zhou, Liu, Liu, Liu, & Gao, 2017).

To provide input to the generation model of a GAN via graph embedding, we need to provide a
realistic distribution of data based on the distribution of connections between nodes in the graph. To
do this, we provide a sample of similar nodes by generating all node pairs that are within a given
window size (the range of neighboring nodes to consider when generating node pairs) on a given path.
We define the node pair generation process as follows.

For a given path P= { 1p , 2p ,…, np }, pairs of nodes within a window size w are generated. Specifically,
for each node ip , all pairs of ip and jp are generated, where j ranges from max(i-w,1) to min(i+w, n).
This can be expressed as:

N(P,w)=
n

i= 1
⋃{( ip , jp )∣j∈[max(i-w ,1),min(i+w,n)]∧i≠j}

represents the set of all node pairs generated for a given path P and window size w, creating pairs
of each node ip with other nodes jp within the window range. These generated pairs are used as the
input distribution for the generation model, where the generator loss measures how similar the
generated data is to the actual data, and the discriminator evaluates its performance in link prediction
by distinguishing how well each node pair is a real or generated connection.

4 Conclusion
This study aims to reduce the resources required for repetitive cyber training systems and establish

an effective cybersecurity framework. Creating varied network environments for cyber training and
conducting simulations by circulating traffic can be expensive and time-consuming. Nonetheless, we
seek to present a unique network training scenario using the GAN model. The GAN model can
approximate current network topologies, providing significant help in constructing simulation
environments without overtaxing resources for actual network settings. Moreover, the method stated
in this research incorporates the diverse features and traffic patterns of tangible networks, thus
enhancing the efficiency and realism of cybersecurity training. Future research will utilize GAN-
based techniques for generating network topologies in diverse environments and scenarios, with the
aim of further investigating their effectiveness and efficiency. The expected results of this study will
serve as a critical basis for improving the quality of cyber security training.
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