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Abstract

This paper reviews current research trends in the formal verification of computer network
configurations, specifically focusing on formal verification for software-defined networking
(SDN). We explore the challenges encountered when applying formal verification, compar-
ing its application to pre-SDN network verification efforts. Additionally, we discuss the
potential application of formal verification in mobile networks. We first provide an overview
of research on the formal verification of virtual LAN (VLAN) configurations, which pre-
dates the emergence of SDN. We next illustrate SDN and existing research applying formal
verification to SDN. Finally, we briefly examine potential scenarios for applying formal ver-
ification to mobile networks.
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1 Introduction

When constructing and managing a computer network, multiple network devices are installed,
connected, and configured. To ensure that the network operates as expected, it is necessary
to consistently configure the network devices. One method to confirm that the network is
functioning as expected is to run and test it. However, it is practically impossible to test every
possible communication. Furtermore, it requires to monitor the network while testing to detect
any security-related issues such as data being received by unintended recipients.

To solve this problem, it is desirable to be able to statically verify the network based on
information about the connection and configuration of network devices without actually running
the network. While it is feasible to verify rather simple networks manually, it becomes difficult
in general as the size of the network increases. Therefore, methods for modeling and verifying
networks applying formal methods have been proposed.

In this paper, we survey a part of such research trends, particularly the research on for-
mal verification targeting software-defined networking (SDN), and discuss the challenges when
applying formal verification in comparison with work on formal verification of networks before
SDN emerged, as well as application of formal verification to mobile networks.

We first outline research on formal verification of virtual LAN (VLAN) configuration, which
was proposed before SDN emerged. We next illustrate SDN and existing research applying
formal verification to SDN. Finally, we briefly discuss some scenarios for applying formal veri-
fication to mobile networks.
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2 Overview of Formal Verification

Formal verification is a method to rigorously verify that a system satisfies desired proper-
ties described in a mathematical or logical language. Such properties are often called formal
specifications of the system. The methodology for formal verification and formal specifica-
tion description, collectively referred to as formal methods, is an important part of software
engineering methodologies.

There are various methods for formal verification, depending on the target system and the
formal specifications. Some methods can verify any state transition system, and others can ver-
ify systems, e.g., implemented as computer programs written in the C programming language.
Some methods can verify only simple properties but allow automatic and fast verification, and
others may allow complex properties but may require significant efforts from users. Here we
will only mention a few major general-purpose methods, although there are a lot of other
general-purpose and special-purpose methods.

The verification methods using SAT solvers are basic methods of formal verification. A
SAT solver is a tool that decides the satisfiability of logical formulas in propositional logic.
State-of-the-art SAT solvers are found on the web page of SAT Competitions[l]. When using
it for formal verification, it is necessary to describe the system and its properties as logical
formulas in propositional logic. For instance, by describing the system and the specification
as logic formulas S and P respectively, you can demonstrate that there is no case where P
does not hold in the system’s behavior by showing that logic formulas S and its negation - P
can not both be satisfied. While the satisfiability of propositional logic is a computationally
hard problem, methodologies have been proposed that, for simple logical formulas, can achieve
the computation within a realistic timeframe. In addition to SAT solvers, SMT solvers[2] are
also used for formal verification and can decide the satisfiability of formulae written in some
extensions of the propositional logic. Furthermore, SAT solvers and SMT solvers are used as
building blocks of formal verification methods for more specific kinds of systems.

To verify systems that can be modeled as state transition systems, the SMV([3] and
NuSMV[4][5][6] tools are often used. These tools verify properties written in temporal log-
ics such as LTL and CTL. For example, with these tools, we can verify that a target system
never reaches an undesirable state. Version 2 of NuSMV (NuSMV2) implements two verifica-
tion algorithms, one of which encodes the verification problem into a SAT problem and calls
an internal SAT solver to decide the problem.

The methods mentioned above are all automatic verification tools. To verify more complex
properties of systems, semi-automatic methods are used. In such methods, general-purpose
theorem provers such as Coq[7] and Isabelle[8]. With these tools, more complex systems and
properties can be described in higher-order logics than the propositional and first-order logics.
However, these tools usually can not automatically verify properties, and users must help the
tools to find proofs of the properties. The correctness of the proofs is automatically checked by
these tools.

3 Formal Verification of Network Configuration

To explain the formal verification of network configuration, we present a brief overview the Saku-
rada’s work [9] that verifies network configurations using tagged VLANs. In tagged VLANS,
in order to virtually (logically) divide a LAN into multiple VLANS, information called tags is
added to the packet header for identification. Here, we explain based on the example in Figure
1.
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Figure 1: LAN divided into two VLANSs

In this example, the LAN is divided into two VLANS, A and B, each of which is given a tag
for identification. If the tag for VLAN A is 100, a packet sent from the terminal Term1 belonging
to VLAN A will be received at port 2 of the network device Switchl. Switchl recognizes it as a
packet from VLAN A based on the port information and adds tag 100 before sending it to the
network device Switch2. Switch2, based on the tag information, identifies it as a packet from
VLAN A and forwards it to port 2, where devices belonging to VLAN A are connected. The
packet is then received by the terminal Term3 belonging to VLAN A.

However, if there is a misconfiguration in Switch2 and the packet is mistakenly sent from
port 3 instead of port 2, not only will Term3 not be able to receive it, but information will
also leak to the terminal Term4 belonging to VLAN B. To detect such network issues caused
by misconfigurations, one possible method is to send packets and check which port they reach.
However, to do this, a means to monitor all network device ports would be necessary. Therefore
this research uses the formal verification technique introduced below to perform verification by
simulation.

In this research, first, the state of a packet is abstracted and represented by a quadruple
of variables (node, port, tag, phase), each representing the network device or terminal that
holds the packet, the port number on the device where the packet is being sent or received, the
VLAN tag, and the state the packet is in after being received (incoming) or after processing
(outgoing).

Next, a state transition model of packets is constructed. The state transitions include the
movement of packets between devices and terminals via cables and the transition where a
received packet is sent according to the device’s configuration. In the latter transition, the tag
attached to the packet is rewritten. For example, the state transition model corresponding to
the network in Figure 1 is depicted as shown in Figure 2, in which the states of the packets
belonging to VLAN B are omitted.

The properties that the network should satisfy are described as properties of this state
transition model, using Computation Tree Logic (CTL). For example, if a packet in the state
at the bottom left of Figure 2 should not reach the terminal Term4, which does not belong to
the same VLAN, we use the CTL formula and “! EF node = Term4,” where “EF” means that at
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Figure 2: State-transition model of VLANs

some point in a state transition path from the initial state, the equation “node = Term4” holds,
and “!” is the negation symbol. It should be noted that other logics such as Linear Temporal
Logic (LTL) can also be used to describe properties of the state transition model.

The properties can be verified using a technique called model checking. Model checking
tools such as SMVI[3][10] and NuSMV|[4][5][6] allow us to verify properties described in CTL or
LTL automatically. Such tools may also output counterexamples when properties do not hold,
providing clues as to where device configuration errors may occur.

Although the work described here focuses on tagged VLANS, the approach can be extended
to IP networks.

4 Software-Defined Networking (SDIN)

We provide an overview of SDN. Although SDN takes on various forms, we focus on the com-
mon elements necessary for formal verification, following the reference [11]. SDN is a network
controlled by software that is separated into a control layer and a forwarding (infrastructure)
layer, as shown in Figure 3. In SDN, a control device (SDN controller) in the control layer
controls multiple network devices (switches) in the forwarding layer. The control layer also
operates based on software and operator requests through an API.

The SDN controller controls the forwarding layer by writing packet forwarding rules to the



Research Directions in Formal Verification of Network Configurations

toward Verification of Mobile Networks Sakurada and Sakurai

Application Layer

N

j{ Northbound API (REST, etc.)

=

Control Layer /
\v\

jt Southbound API (OpenFlow, etc.)

Forwarding (Infrastrucure) Layer

Figure 3: Diagram of SDN (created based on [12])

switches through a southbound API. Protocols like OpenFlow [13] are used as southbound
APIs. In addition to the packet forwarding rules, OpenFlow defines messages that allow the
SDN controller to send specific packets to the switches and messages that enable the switches
to forward received packets to the SDN controller. With these messages, the SDN controller
can directly control the switches and send and receive packets, e.g., for topology detection
and latency measurement in the forwarding layer. Furthermore, software in the application
layer sends requests to the control layer through a northbound API. The northbound API
has been discussed by the Open Networking Foundation, which developed the specifications
for OpenFlow. However, there is currently no standardized protocol, and it depends on the
implementation of the SDN controller.

Compared to traditional network construction without SDN, the configuration of conven-
tional network devices, especially IP routers, was performed by operators using command-line
interfaces, and routing protocols were used to aggregate routing information from surrounding
networks and calculate the actions (forwarding rules) for packets based on that information. In
SDN, only the forwarding process based on the forwarding rules is performed by the devices in
the forwarding layer, while the processing that involves the aggregation of routing information
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using routing protocols and the calculation of forwarding rules based on that information are
offloaded to the SDN controller.

SDN is used in various cases, including network operation and management within data
centers [14]. In a data center, where numerous users and services are accommodated on the
same physical infrastructure, virtualization of servers and networks is commonly implemented.
Since manually changing the settings of physical network devices through the command-line
interface every time is inefficient, centralized control using SDN is employed. Moreover, SDN
allows us to automatically make necessary changes to network devices for service provisioning
in response to requests from the application layer through the control layer.

In addition to its flexibility in network management, SDN also offers cost benefits. SDN
controllers can be implemented using open-source controller software. Furthermore, we can use
relatively inexpensive network equipment known as white-box (bare-metal) switches, designed
and manufactured by combining generic components and not shipped with a switch-specific
operating system (switch OS). These switches can then have an open-source switch OS installed
for utilization.

5 Application of Formal Verification to SDIN

In this section, we discuss several existing studies that apply formal verification to SDN and
compare them to the method described in Section 3 for a better understanding. Since there
are numerous research works on the application of formal verification to SDN, we defer an
exhaustive introduction to other references [15][16][17].

The application of formal verification to SDN can be divided into verification of the control
layer and verification of the forwarding layer. Since the latter is more similar to the method
described in Section 3, we first see it.

5.1 Verification of Forwarding Layer

In SDN, similar to VL ANS, failures such as packet loss can occur due to misconfigurations and
inconsistencies in switch settings. The verification of the forwarding layer aims to ensure that
such misconfigurations do not occur.

In SDN, it can be assumed that the SDN controller maintains the information about the
network topology. Furthermore, the SDN controller can retrieve the forwarding rules configured
on the switches. This allows us to easily collect the information required for modeling the
network, as discussed in Section 3. However, since SDN may forward packets depending on
header information, including VLAN tags, IP addresses, and IP ports, verification methods
must handle these types of header information.

FlowChecker [18] is a verification method similar to the approach discussed in Section 3.
It uses the information available to the SDN controller to create a state transition model of
packets and verify properties such as reachability using symbolic model checking.

Another method proposed earlier is Anteater [19][20]. Anteater uses propositional logic
formulas to describe the state transition model of packets and the desired properties (such
as loop detection, packet loss, and configuration inconsistencies). It then uses a SAT solver to
determine the satisfiability of these formulas and detect any faults. While it is possible to extend
the method discussed in Section 3 to IP networks, it requires incorporating the information of
the headers as parameters in the model. As a result, when we use header information that has
not been used previously, the model construction method needs to be extended accordingly.
To address this issue and handle header information more generally, a method called Header
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Space Analysis [21] has been proposed. This method represents sets of packets using the bit
patterns of their headers. Similar to regular expressions for representing sets of strings, it
provides operations such as union, intersection, complement, and difference of the bit patterns.
After constructing a state transition model of the bit patterns based on the information of the
topology and forwarding rules, it then verifies reachability, detects loops, and examines leakage
in virtual divisions (slices) similar to VLANSs.

The methods mentioned so far may take longer to perform verification as the size of the net-
work increases. Therefore, it becomes challenging to perform instant verification when making
configuration changes. To address this issue, methods such as NetPlumber [22] and VeriFlow
[23] define invariant conditions that the network should satisfy and verify that these conditions
are maintained based on the differences between new and old configurations. Such verifica-
tion based on differences cannot be performed using general-purpose model-checking tools. To
accomplish this, research on the model-checking methodology itself is necessary.

5.2 Verification of Control Layer

In the verification of the control layer, the SDN controller is validated to configure switches
correctly in response to inputs from the application layer and to ensure the correct operation of
the forwarding layer. If the correctness of the operation, namely the properties to be verified,
can be defined, then verification of the forwarding layer can be conducted.

Kuai [24] models the control and forwarding layers as a single system based on the SDN
controller program and performs verification. The SDN controller and switches are modeled as
finite-state machines asynchronously exchanging messages, abstracting communication through
the southbound API. The sequences of transitions of these finite-state machines are verified to
satisfy the given properties. By incorporating the behavior of the SDN controller into the model
and allowing for asynchronous communication, this method can also discover potential issues
that may arise from the order in which the changes made by the SDN controller to the settings
of multiple switches are reflected. This method corresponds to incorporating the operation of
the SDN controller into the state transition model in Section 3, but the number of states in
the model becomes extremely large. Kuai uses a state reduction technique called partial order
reduction, commonly used in the research area of concurrent system verification.

All the methods introduced so far are applicable when the topology is specifically de-
termined, but there are also methods to verify the SDN controller program in a topology-
independent manner. Guha et al. [25] propose a method to verify the behavior of an SDN
controller that translates inputs from the application layer into OpenFlow commands. The
inputs from the application layer are described as a program written in a language called Net-
Core. This program instructs each switch on the actions to be taken when receiving a packet,
such as which port to forward the packet to and its associated conditions. The SDN controller
converts the program into a sequence of OpenFlow commands. Then, the verification is per-
formed by ensuring that the forwarding layer operates as instructed by the NetCore language
program when the SDN controller’s output configures the switch. To achieve this, the formal
semantics of the NetCore language, the transformation rules of the SDN controller, and the
meaning of the sequence of OpenFlow commands are described as certain logical formulas in
the general-purpose theorem-proving system Coq [7], and their relationships are proved in Coq.
Since automatically performing verification based on such general definitions is difficult, the
verification is carried out by manually describing the proofs in Coq and using Coq’s capabilities
for partial automation and correctness checking. Furthermore, from the proofs written in Coq,
extracting an OCaml [26] program is possible, resulting in an SDN controller software with
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rigorous proofs.

5.3 Toward Formal Verification for Mobile Networks

In this section, we briefly discuss the application of formal verification to the configuration of
mobile networks.

Similarly to SDN, 4G/5G mobile networks also separate the control plane and the data
plane. In 4G/5G mobile networks, they are referred to as C-plane and U-plane, respectively.
The C-plane not only controls the U-plane but also has various functions such as authentication
and session management of mobile devices such as smartphones. Figure 4 shows a conceptual
diagram of a 5G mobile network system. In the U-plane, user equipment (UE) such as a
smartphone is connected to the core network through the radio access network (RAN) and
communicates with data networks (DN) such as the internet through the user plane function
(UPF). In the C-plane, there are various functions controlling the network, such as the access
and mobility management function (AMF) performing access authorization and authentication.
The significant difference between SDN in Section 4 and 5G systems is that the C-plane has

NSSF | | NEF | |NRF| |PCF| [UDM| |AF | | EASDF
| | | | | | |

| | | | | |
NSSAAF AUSF | | AMF SMF SCP | | NSACF

Figure 4: 5G System Architecture [27]

various functions such as authentication, authorization, billing, session management, terminal
calling from the network side, and data prioritization control. Furthermore, very low latency
as well as high speed is required in 5G systems.

We consider the following scenarios for applying formal verification to mobile networks such
as bG.

The first scenario is similar to the verification of controllers discussed in Section 5.2. We
verify behaviors of some network functions instead of controllers in SDN. For example, we
verify the consistency of network functions collaboratory controlling the U-plane, considering
network functions operating simultaneously for multiple UE. However, unlike in Section 5.2
the impact of U-plane operations by network functions goes beyond packet reachability, so a
different approach from the one introduced in Section 5.2 is required.

The next scenario focuses on specific services provided by mobile networks. For example,
there is a technology called network slicing, in which a 5G network is virtually divided into
multiple networks. These virtual networks provide different service levels such as latency and
speed. The security requirements for services using network slicing have been discussed in a
document [28] by NSA and CISA, and the requirements stated in the document are properties
that should be verified. FlowChecker in Section 5.1 allows us to check the leakage of packets

)

8



Research Directions in Formal Verification of Network Configurations

toward Verification of Mobile Networks Sakurada and Sakurai

over slices, although it does not specifically take mobile networks into account. One may apply
a similar method for mobile network slicing.

Finally, in cases where low-latency communication is desired within the mobile network, a
replacement for UPF called SRv6 MUP has been proposed and implemented. Instead of going
through the UPF, which may be located far from UE, it allows UE to communicate through
shorter paths. It uses a method called segment routing, which allows flexible path specification
through source routing. Since segment routing is a mechanism different from manipulating
forwarding rule in Section 4, the formal verification of SDN controlled by segment routing is an
interesting research topic.

6 Conclusion

In this paper, we outlined some of the verification methods for SDN from the perspective of
whether the VLAN verification method in Section 3 can be extended to SDN. We also briefly
discussed the challenges in network configuration verification, particularly for mobile networks.
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