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Abstract 

Presently, owing to the deployment of 5G networks, people wish that high quality 
streaming can be available in the near future. However, data transmission between BS 
and UE is one of the biggest challenges for high-quality streaming. The key reason is 

that a BS is often given limited bandwidth. To mitigate the problem, in this study, we 
propose a downlink scheduling mechanism, named the Machine-learning based 
Scheduling Scheme (QSRAS) which dynamically adjusts QoS parameters for a base 
station. Our simulation demonstrates that the QSRAS outperforms those of state-of-the-
art systems on throughputs and delays. 
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1 Introduction 

Currently, online streams and multimedia are popularly used everywhere in the world. Also, 

a large number of IoT systems, such as smart cities, industry automation and intelligent 

vehicles, will be established and connected to 5G networks. In order to offer users with 

greater bandwidth and tolerable delays, LTE employs Scheduling and Resource Allocation 

(SRA) to manage wireless resources for UEs so as to make the limited radio resources of a 

BS be effectively utilized.  
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In this study, w we propose a downlink scheduling mechanism, named the Q-learning 
based Scheduling Resource Allocation System (QSRAS) which dynamically adjusts QoS 

parameters for a base station. Our simulation demonstrates that the QSRAS outperforms 

those of state-of-the-art systems on throughputs and delays. 

This paper is organized as follows. Section 2 briefly describes related studies of this paper. 

Section 3 presents the architecture of the QSRAS. Our simulation and the results are stated 

and discussed in Section 4, respectively. Section 5 concludes this paper and addresses out 

future studies. 

2 Relate Work 

In the following, we will briefly describe the related studies of this paper. 

2.1 Scheduling and Resource Allocation (SRA) 

Basically, when UE is connected to a BS, Channel State Information (CSI) will be exchanged 

between these two network components every Transmission Time Interval (TTI). As 

receiving CQI from UE, BS chooses an appropriate modulation and coding scheme (MCS) 

for this UE following Adaptive Modulation and Coding (AMC) defined in [1]. After that, the 

SRA allocates suitable resources of BS to serve the UE, aiming to achieve better system 

performance.  

2.2 Packet Scheduling Algorithms 

According to [2], radio resource management and scheduling solutions can be divided into 
two types: QoS unaware and QoS aware. 

2.2.1 QoS Unaware 

QoS unaware deals with parameters related to system fairness, including CSI, average 

transmission rate, etc., aiming in effectively allocating radio resources and scheduling UE 

transmission. 

Max CQI [3] allocates radio resources to UEs according to the conditions of the channel 

allocated to UEs at current TTI. In fact, Max CQI can effectively maximize the overall 

throughputs of data transmission without guaranteeing resource allocation fairness among 

UEs. With RR, the circulated schedule offers the best user fairness. But its throughputs are 

not maximum due to lacking channel quality. PF maximizes throughputs and achieves 

fairness by estimating current channel quality and transmission rates before it assigns RBs to 

UEs. 
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2.2.2 QoS-Aware 

This scheduling category takes different parameters into account for scheduling decisions. 
The following will be their explanation. 

(1) Delay Aware 

Delay aware scheme is more suitable for real-time transmission (RT) flows, such as, self-

driving car and remote surgery. QoS class identifier (QCI) [4] can be applied to different 

types of RT flows, including delivery delay, packet loss, flow priority, etc. Typical delay 

aware approaches, like Modified earliest deadline first (M-EDF) [5], Modified Largest 

Weighted Delay First (M-LWDF) [6], Exponential Proportional Fair (EXP-PF) [6] and 

Exponential Rule (EXP-Rule) [7], can be found in literature. However, these approaches do 

not balance QoS services when flows are hybrid, i.e., mixing RT and NRT (non-real-time 

transmission). Generally, RT flows which are given higher priority should be delivered first. 

 

A. EXP-PF 

This scheduler calculates weight W𝑖,𝑗(𝑡) for flows, aiming to enhance the priorities of RT 

flows by adopting exponential function, 𝐷𝐻𝑜𝐿 and PF rule and h(𝑡), defined in [2], which 

is the delay of RT flows, as well as N𝑖 which is the number of RT flows currently in the 

system. The EXP-PF truly lowers delay time for RT flows. 

B. M-LWDF 

This scheme deals with PF and Head of Line (HoL) Delay when delivering RT flows, while 

utilizing PF to process NRT flows, meaning that M-LWDF takes care of RT and NRT flows 

for scheduling at the same time. Its weight parameter W𝑖,𝑗(𝑡) can be found in [2], where 

𝐷𝐻𝑜𝐿,𝑖(𝑡)  is HoL delay, and α𝑖  decides the degree of delay. δ𝑖  is is the maximum 

probability that 𝐷𝐻𝑜𝐿,𝑖(𝑡) may exceed the delay threshold τ𝑖 defined beforehand. If a RT-

flow packet’s delay time in the MAC queue exceeds τ𝑖, the M-LWDF drops the packet to 

avoid prolonging the flow’s delays. 

(2) Queue Aware 

Generally, Queue Aware schemes emphasizes fairness for overall UEs presently in a system, 

particularly focusing on the length of a MAC queue, attempting to highlight throughputs of 

RT flows, while guaranteeing the lowest transmission rate for NRT flows. Virtual Token 

Modified Largest Weighted Delay First (VT-M-LWDF) is a typical Queue aware scheme by 

improving M-LWDF. Its W𝑖,𝑗(𝑡) (Nasralla, 2020) is calculated by substituting the delay of 

RT Flows in M-LWDF by queue length. This parameter shows the number of packets right 

now in a queue. Actually, the VT-M-LWDF is more suitable for multimedia services, like 

VoIP and jitter sensitive applications. 
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A. Target bitrate 

The Target bitrate is developed for maximizing throughputs of all UEs in a system, like those 
in [8][9]. It minimizes target transmission rates for RT flows, while maximizing throughputs 

for NRT flows. However, when serving RT and NRT flows at the same time, their rules are 

hard to guarantee the QoS requested by users. 

B. Hybrid and others 

Many hybrid algorithms have been relaesed. Nasvalla [2] presented a hybrid scheduling 

approach to improve M-LWDF by applying SRA algorithm to RT and NRT flows 

simultaneously for lowering NRT delays. It adopts a cross-layer high-efficient algorithm 

introduced in [10] which achieves the best performance of the SRA with a dynamic 

programming method. Actually, it is an enhanced version of a greedy algorithm described in 

[11]. As we know, a greedy method may be stuck on a local minimum, rather than a global 

one.  

Feki and Zarai [12] presented a Q-learning SRA for determining which scheduling 
algorithm is suitable for current TTI. Based on system fairness indexes, throughputs, and 

other thresholds, PF is chosen when the underlying system is now balanced between 

throughputs and fairness. Max CQI will be used when system throughputs have not met UE‘s 

QoS requirements. When fairness does not achieve UE’s requests, RR will be chosen. 

2.3 The Q-Learning  

Reinforcement learning, as a machine learning technique, focuses on the interaction between 

itself and current working environment. The purpose is maximizing the rewards for the 

following processes. The key concept of Q-learning is to enhance good behaviors, and 

weaken poor ones. The 𝑄 function defined in Eqs. (1) and (2) [12] for a 

given 𝑄(state, action) is shown below.  

 

𝑄(𝑠𝑡 , 𝑎𝑡) ⟵ 𝑄(𝑠𝑡 , 𝑎𝑡) + α × δ𝑡      (1) 

 

δ𝑡 = 𝑟𝑡+1 + γ max
𝑎

 𝑄(s𝑡+1, 𝑎𝑡)  −  𝑄(s𝑡 , 𝑎𝑡)    (2) 

 

in which 𝛿𝑡 is a temporal error; 𝑄(𝑠𝑡 , 𝑎𝑡) as a function evaluates current actions; 𝛼 is the 

learning rate, 0 ≤ α ≤ 1, for ranking the certitude of values estimated previously; 𝑟𝑡+1 is an 

reward received from the environment and 𝛾represents the weight that influences future 

rewards by immediate rewards, 0 ≤  𝛾 ≤ 1. It is a discount factor showing the importance of 

future rewards. If  𝛾 = 0, this learning approach only accepts immediate reward. 
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3 The QSRAS Architecture 

 

Fig. 1.  The architecture of the QSRAS. 

The architecture of the QSRAS is shown in Fig. 1. It balances system throughputs and delays 

for UEs. The approach used is updating Q-Table with Q-learning technique to guarantee  

UEs’ QoS requirements, while continuing serving NRT applications. The QSRAS adopts 

channel quality and HoL delays as its key QoS parameters. In the QSRAS, UE’s weight of 

flowi at subcarrierj at time 𝑡, denoted by W𝑖,𝑗(𝑡), is calculated by using Eq. (3). In each TTI, 

the higher the weight, the higher the UE’ s priority. 

W𝑖,𝑗(𝑡) = W𝑖,𝑗(𝑡 − 1) + α (R𝑖,𝑗(𝑡) − W𝑖,𝑗(𝑡 − 1))   (3) 

 

where  W𝑖,𝑗(𝑡 − 1) represents the weight of flowi at subcarrierj at time 𝑡 − 1; R𝑖,𝑗(𝑡) is 

the immediate reward responded from the underlying environment for flowi at subcarrierj at 

time 𝑡; as described previously, 𝛼 is the learning rate, 0 ≤ α ≤ 1. When the value of 𝛼 is 

larger, the impact on 𝑄 by reward 𝑟 is also higher. To balance QoS required by RT flows, 

α > 0.5 to improve the impact on the next TTI by current reward, consequently producing 

greater impacts on the weight of RT flows at time t. 

γ in Eq. (2) indicates the weight influencing future rewards by current immediate 

rewards. But, we only consider immediate reward. In other words, this reward is determined 

only by current environment, i.e., γ =  0 . The reward R𝑖,𝑗(𝑡)  received from current 

environment is shown in Eq. (4). 

 

R𝑖,𝑗(𝑡) =  
𝑟𝑖,𝑗(𝑡)

𝑅𝑖(𝑡)
×  DHoL,𝑖(𝑡)     (4) 

 

in which 𝑟𝑖,𝑗(𝑡) defined above is the instantaneous transmission rate of flowi at subcarrierj 

at time t, 𝑅𝑖(𝑡) is defined in [2], DHoL𝑖
(𝑡) is flowi’s HoL delay at time t. When allocating 

an RB to UE, e.g., UEl, SRA retrieves the maximum weight, e.g., W𝑙,𝑘(𝑡), 1 ≤  𝑘 ≤ 𝑚, in 

Matrix table (𝑛 × 𝑚) and then allocates RBk to UEl. In other words, 𝑟𝑖,𝑗(𝑡) is utilized to 

enhance system throughputs, and  DHoL,𝑖(𝑡) improves the weight for delay in Matrix table. 
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Since this learning technique takes previous weight as a part of its parameters, its 
diversification of its weights is smoother than those of the other algorithms. 

4 Experiment and Analysis 

In the following, 5G-air-simulator, an open-source simulator [13], will be used to perform 

our experiments. The metrics employed includes packet loss rate (PLR), delays, throughputs 

and spectrum efficiency. Assuming that the number of packets sent by sender (received by 

the receiver) is K (Q). PLR is defined as (K-Q)/K. Throughput is defined as the number of 

bits the receiver receives per second. Delay is the time with which a packet travels from the 

sender to the receiver. Spectrum efficiency is defined as the number of bits that a spectral 
frequency in Hz can carry. We will also evaluate the performance of the QSRAS and some 

state-of-the-art SRA algorithms in 5G. 

4.1 Simulation 

The parameter settings of the 5G-air-simulator are listed in Table 1. In a cellular system, 

seven cells are joined as a hexagon, and a number of UEs are connected to a BS. UEs move 

toward the directions randomly selected with the moving velocity of 30 km per hour. An UE 

sends video packets toward their destinations simultaneously. The simulation last 30 s, and a 

flow is transmitted 25 s. 

Table 1.  Simulation Parameter settings 

Parameters Values 

Base station Bandwidth 20 MHz 

Number of RBs 100 RBs 

Number of UEs 10~60 

Max Delay 100 ms 

Frame Structure FDD 

Cell radius 1000 m 

Video bitrate 440 kbps 

UE’s moving speed 3, 30, 75, 120, 240 and 360 km/h 

 

4.2 Evaluation 

In the following experiment, we evaluate performance of some state-of-the-art SRA 

algorithms, including PF, M-LWDF, EXP-PF, RR and QSRAS, given different moving 

speeds of UE. The evaluation metrics as mentioned above include PLRs, delays, system 
throughputs and spectral efficiencies. Each experiment is performed 100 times. 
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Fig. 2.  Packet loss rates of the 4 test schemes. 

After testing, the PLRs of the 4 schemes are shown in Fig. 2. When the amount of users is 

high, the video quality decreases since PLRs are relatively high. Since they compete the RBs 

of the base station they are connected to. With lower moving speeds, the QSRAS performs 

better, even not completely outperforming other evaluated systems. PF’s PLRs are high when 

speeds are low. But on 360km/h, the values are lower than those of other schemes since it 
does not deal with QoS parameters, thus able to transmit data directly. Other three schemes 

need to check QoS parameters before allocating RBs to UEs and choose corresponding signal 

modulation approaches, e.g., 256 QAM or QPSK. Further, when UE’s moving speeds are 

higher than 75 km/h, PLRs are heavy. 

Delays of the 4 test schemes are illustrated in Fig. 3, in which the schemes without QoS 

receive longer delays, meaning that if SRA algorithms would like to reduce packet 

transmission delays and enhance user experience, the parameter of delays need to be one of 

the QoS parameters. The PF’s delays are long since no QoS parameters are involved. 
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Fig. 3.  Delays of the 4 test schemes. 

 

Fig. 4.  Throughputs of the 4 test schemes. 

Throughputs are shown in Fig. 4. As number of users rises, throughputs follow for all test 
schemes. When UEs’ moving speeds are low and traffic is heavy, i.e., involving many more 

users, the PF’s throughputs are lowered. As moving speeds are up to 360 km/h, the PF 

outperforms the other three due to its low PLRs (see Fig. 2). 
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Fig. 5.  System spectral efficiencies. 

The system spectral efficiencies of the 4 test schemes for a network are depiced in Fig. 5. 

Spectral efficiency actually is one of the performance indicators for base station resource 

utilization. As number of users is higher, spectral efficiencies increase for all test schemes. 

When the number of UEs is 60 and UEs’ moving speeds are low, the spectral efficiencies can 

achieve 11-12 bit/Hz. However, at high speeds, the values are reduced to 2-4 bits/Hz., 
meaning UE’s moving speeds are an important factor for spectral efficiencies. 

5 Conclusions and Future Studies 

This study presents a Q-learning_based downlink SRA system, attempting to improve the 

performance for traffic of different categories and enhance its system capacities. In [10], the 

scheduling/resource allocation approaches with various QoS parameters are discussed, 

including delay aware, queue aware, target bit-rate aware, Hybrid aware and others. The 

QSRAS deals with channel quality, previous delays and throughputs and computes the 

weight with Q-learning approach for RB scheduling and allocation. Our simulation evaluates 

different downlink scheduling/resource allocation schemes. The evaluation metrics include 
PLRs, transmission delays, system throughputs and spectral efficiencies. 

Our simulation shows that the schemes of delay awareness demonstrate well. Also, the 

QSRAS balances QoS and traffic of different categories. Now, we dare to conclude that QoS 

balanced scheduling/resource allocation schemes are better in delivering RT flows. In the 

future, we would like to optimize and extend this study and derive the behaviors and 

reliability models of the QSRAS so that users can comprehend the behaviors and reliability 

before using it. These constitute our future studies. 
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