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Abstract 

In this paper, we tested popular encryption algorithms' characteristics and optimization 
efforts and measured their power consumption and performance according to the platform. 
The aim is to determine the energy efficiency of encryption and decryption for each 
encryption algorithm and contribute to improving energy efficiency in large data centers 
and other areas where encryption is heavily used. The test results show that optimizations 
using the CPU's instruction set significantly improve encryption and decryption time but 
not energy efficiency. In particular, using NEON instructions on ARM-based platforms 
resulted in performance gains but increased energy consumption. As the amount of data 
transferred increases with the spread of 5G and the cloud, additional research should 
continue to be conducted to improve the energy efficiency of cryptographic algorithms. 

 
Keywords: Energy-efficient cryptographic algorithms, Power consumption of cryptography, 
Energy-efficient computing 

1 Introduction 
The growth of non-face-to-face industries due to COVID-19 and the expansion of various 

applications such as AI and cloud have led to a rapid increase in data centers, leading to a rapid increase 
in power consumption. The top 20 U.S. companies owned 597 massive data centers in 2020, double the 
number five years earlier. According to the IEA, data centers worldwide consumed between 200 and 
250TWh of electricity in 2020, higher than the world's 16th largest consumer, South Africa (208TWh), 
and estimated to consume about 1% of the world's electricity. This trend is expected to overgrow, and 
to address the problem, Microsoft, Google, Meta, Intel, and others have formed the Open Compute 
Project (OCP) to explore open, energy-efficient computing. In particular, with the advent of 5G, 
encryption is becoming more critical for learning large amounts of data through AI, and the need to 
analyze the amount of power consumed in encryption operations and make efforts to improve it is 
increasing. 

Various encryption algorithms have been developed, and most existing ones have been developed 
by focusing on encryption speed and security strength. The power consumption of cryptographic 
algorithms has not been a concern. Still, as mentioned above, countries that have identified the 
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seriousness of computing power consumption in data centers are beginning to research and develop 
hardware and software to improve power consumption. In line with this trend, it is necessary to develop 
encryption algorithms suitable for various mobile devices with low power consumption. 
Symmetric-key encryption algorithms currently in use are AES, ARIA, and SEED, while public-key 
encryption methods include RSA and ECC. 
Since this paper aims to analyze the power consumption of encryption algorithms, we selected an 
algorithm developed for lightweight encryption. The Adiantum encryption algorithm is the most recent 
algorithm developed by Google, and ChaCha20 and CHAM are all algorithms designed to speed up 
and lighten existing encryption algorithms. 
In this paper, we further analyzed the power consumption of the AES encryption algorithm to compare 
it with these lightweight encryption algorithms. The purpose of this paper is to analyze the power 
consumption of each encryption algorithm and suggest directions for the development of low-power 
encryption algorithms. 
This paper is organized as follows. First, we discuss the structure and characteristics of each 
cryptographic algorithm. We then identify techniques for speeding up each cryptographic algorithm, 
particularly how to increase processing speed by using processor-specific vector arithmetic instructions. 
We then describe the test environment and test methods for each cryptographic algorithm. In this paper, 
encryption algorithms implemented using processor-specific optimized instructions were used, and the 
time required for encryption and decryption of each encryption algorithm was measured by repeated 
testing. The power consumed is measured using a power analyzer, and the amount of power consumed 
by each algorithm for encryption and decryption is calculated. Finally, the test results show the amount 
of power consumed per byte for encryption and decryption and suggest future research directions. 

2 Related Work 
In this chapter, we will review the characteristics of cryptographic algorithms and the related 

research that has been done to make them lighter and faster. Low-power cryptographic algorithms have 
not been a focus of traditional cryptography researchers, so little research has been done on them. 
However, energy-efficient cryptographic algorithms are very relevant to light-weighting, so that we 
will discuss them. 

2.1 AES (Advanced Encryption Standard) 
AES (Advanced Encryption Standard) is currently the most widely used encryption algorithm, 

developed to replace DES. A symmetric key algorithm uses the same key for encryption and decryption. 
AES is a symmetric key algorithm that uses the same key for encryption and decryption. It has a free 
key size of 128bit, 192bit, and 256bit and has an SPN (Substitution - Permutation Network) structure. 
The SPN structure requires an inverse function in the encryption process, but it can be encrypted at 
once without moving bits so that it can perform encryption operations efficiently [1]. AES stores 16 
input bytes in a 4x4 matrix (state) in 16 one-byte units. A round of AES consists of four operations: 
SubBytes, ShiftRows, MixColumns, and AddRoundKey. The SubBytes step organizes the message into 
a square matrix and replaces each byte in the array using the S-box opesration. ShiftRows in AES are 
done in bytes, unlike DES, which is done in bits. MixColumns performs a column-by-column function, 
grouping four bytes into a 4X1 matrix and multiplying it with a 4x4 identity matrix to create a new 
matrix. The multiplication operation is computed in GF (28). AddRoundKey is the process of 
performing a subkey and XOR operation on each byte in the matrix during the round. The above four 
steps are repeated 10 to 14 times per round, depending on the number of bits, to make AES work. The 
operating modes are CBC, OFB, CFB, and GCM, with CBC and GCM modes being the most popular 
as they allow for parallel processing. 
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The AES encryption algorithm's most widely known optimization method is the look-up table-based 
method proposed by Bertoni et al. [2]. In their paper, Bertoni et al. combine the AES algorithm's 
SubBytes, ShiftRows, and MixColumns and generate a precomputed look-up table to apply to round 
operations. While the existing AES algorithm requires 256 bytes of S-Box memory, the optimized 
method requires four 32-bit tables with 256 entries, which means 4,096 bytes of memory space. In 
addition, Bernstein et al. proposed a technique to speed up the algorithm by storing and reusing some 
of the information in the operation using the characteristics of the CTR mode of the AES algorithm. 

2.2 ChaCha20 
ChaCha20 is an encryption algorithm that improves the existing Stream encryption algorithm 

Salsa2008 to increase the spread per round. It has the same 128-bit constant, 256-bit key, 64-bit counter, 
and 64-bit nonce as Salsa2008 and has the advantage of being able to encrypt and decrypt at high speed 
based on ARX (add rotate XOR) and XOR. 

ChaCha, a popular symmetric-key cryptographic algorithm, has been developed and optimized for 
various platforms. On X86 platforms, 128-bit vectorization was first applied to speed up encryption 
rounds, as ChaCha's four-round operations can be processed independently, allowing them to be 
processed simultaneously via 128-bit vectors. With the development of processors, the AVX2 
instruction, which can process 256-bit vector operations at once, appeared, and M. Goll and S. Gueron 
discovered that two block functions using 128-bit vectors could be processed simultaneously using this 
instruction. Later, the AVX512 was introduced to handle 512-bit vector operations, allowing four block 
functions to be processed simultaneously, making encryption more efficient [3][4]. 

2.3 CHAM 
The CHAM cryptographic algorithm was developed in Korea and proposed in 2017 (revised CHAM 

submitted in 2019) through the Lightweight Cryptographic Algorithm Competition. CHAM is a block 
cipher algorithm with a four-branch Feistel structure and supports three modes depending on the block 
size and key size. The supported modes are shown in the table below. The CHAM encryption algorithm 
was developed to be lightweight, and, significantly, it uses a stateless round-key technique that does 
not store the state of the key, dramatically reducing storage space. It is also based on ARX operations, 
which has the advantage of applying to low-performance processors. Seo et al. proposed an optimization 
technique based on ARM-NEON processors' SIMD instructions (8x16 vector instructions) to perform 
operations in parallel [5]. Song et al. obtained a performance improvement of 15.87% in CHAM 64/128 
CTR mode by optimizing based on ARMv8 processors [6]. 

 
Cipher Plaintext Length Key Length Round Word Size 
CHAM-64/128 64bit 128bit 88 16bit 
CHAM-128/128 128bit 128bit 112 32bit 
CHAM-128/256 128bit 256bit 120 32bit 

Table 1: CHAM cipher mode 

2.4 Adiantum 
Google requires Android device manufacturers to make their devices capable of AES encryption. 

Still, the reality is that AES encryption performance is very slow for low-end mobile devices and 
connected devices, so this algorithm was developed to solve the problem. Block ciphers were designed 
to enable parallel operations based on the XChaCha12 algorithm, minimizing the space for various 
nonces and MACs and simplifying the rounds. This allows it to perform more than five times better on 
ARMv7 devices than the AES-256-XTS encryption algorithm [7]. 
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3 Evaluation 
This chapter describes the test platforms, test environment, and test procedures. To analyze the 

power consumption of encryption algorithms, experiments were conducted on the X86 platform and 
Raspberry Pi 4 for embedded use. The specific test environments are shown in the table below. 

 
Platform Item Specification 
X86 Platform CPU Intel i7-1165G7 

Memory LPDDR4 16GB 
SSD 1TB (NVMe 1.4) 
OS Ubuntu 20.04 64bit 
Kernel-Version 6.5.4 

Embedded Platform CPU BCM2711 Quad-core 1.5GHz Arm Cortex-A72 
Memory 8GB 
OS Debian 11 bullseye 64bit 
Kernel-Version 6.1 

Table 2: Test Platforms Specification 

The power analyzer used to measure the power consumption is the WT332 model from 
YOKOGAWA. This model is a high-precision power analyzer corresponding to IEC 62301, with 5 ㎃ 
accuracy and a measurement resolution 10 ㎼. The details are shown in the table below. 

 
Item Specification 

Measurement accuracy 0.1% + 0.05% of Range 

Frequency Bandwidth DC 0.1 ㎑ to 100 ㎑ 

Sampling Rate 100ks/s 

Data Update Rate 100 ㎳, 250 ㎳, 500 ㎳ 

Table 3: Power Analyzer Specification 

The figure below shows the overall test environment configuration. The X86 Platform and Arm 
Platform were powered by the power analyzer to run the encryption algorithm. A separate test PC was 
connected to the power analyzer via USB to monitor the power consumption while the encryption 
algorithm was running, and the usage was recorded every 100 ㎳. 
In addition, to calculate the net power consumption of the encryption algorithm, we measured the idle 
power for 10 minutes before the test, averaged it, and subtracted it from the estimated power. The CPU 
was set to the maximum frequency using the CPU Governor command, as low power mode can affect 
the power consumption calculation.  
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4 Test Results 
The results show a significant difference in power consumption depending on the encryption 

algorithm. All tests were performed with a buffer size of 4096 bytes and 10,000 cycles. When 
encryption and decryption were performed repeatedly, the power consumption of each was measured. 
For the Arm platform, we measured both with and without NEON-based instructions. 

Cipher Algorithm Run Time 
(s) 

Net Power 
Consumption 

(W) 

Performance 
(KB/s) 

CPB 
(Cycle per byte) 

ChaCha20 Encryption 16 13.7475 655,403 7.171 

ChacCha20 Decryption 15 13.8720 858,313 5.476 

AES-128-XTS 
Encryption 

57 13.7242 184,436 25.483 

AES-128-XTS 
Decryption 

100 14.9976 102,769 45.734 

AES-256-XTS 
Encryption 

79 13.2881 131,705 35.686 

AES-256-XTS 
Decryption 

143 12.0613 72,101 65.186 

Adiantum-XChaCha20 
Encryption 

21 14.3657 513,948 9.145 

Adiantum-XChaCha20 
Decryption 

15 14.4480 507,349 9.264 

CHAM 128/128-XTS 
Encryption 

46 12.1461 225,518 20.841 

Figure 1: Test Configuration 
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Table 4: Test results (X86 Platform) 

On the X86 platform, the ChaCha20 encryption algorithm performed best.  Google's Adiantum 
algorithm, which is based on XChaCha20, also performed as well as ChaCha20. The CHAM128/128-
XTS encryption algorithm consumed the least power when encrypting, as shown in Figure 2. Unusually, 
the CHAM 128/256-XTS method was measured to consume the least power for decryption. Figure 4 
shows the sum of encryption power consumption and decryption power consumption, or total power 
consumption. CHAM 128/256-XTS performed the best in terms of total power consumption. We 
expected LEA and other lightweight encryption algorithms to measure lower, but they consumed more 
power than the AES encryption algorithm. 
 

 

CHAM 128/128-XTS 
Decryption 

68 13.1824 151,997 30.922 

CHAM 128/256-XTS 
Encryption 

54 13.1867 191,611 24.529 

CHAM 128/256-XTS 
Decryption 

82 11.9371 127,210 36.947 

LEA-128-XTS 
Encryption 

16 15.2100 632,616 7.429 

LEA-128-XTS 
Decryption 

24 13.9500 435,234 10.799 

LEA-256-XTS 
Encryption 

22 15.2836 487,460 9.642 

LEA-256-XTS 
Decryption 

31 13.8542 331,178 14.192 

Figure 2: Power Consumption - Encryption 
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The results of encrypting and decrypting each encryption algorithm on the ARM platform are shown 
below. The ChaCaha20 algorithm using the ARM-optimized NEON instructions performed best on the 
ARM platform. 
 
 
 
 

Figure 3: Power Consumption - Decryption 

Figure 4: Total Power Consumption 
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Table 5: Test results (Arm Platform) 

 

Cipher Algorithm Run Time 
(s) 

Net Power 
Consumption 

(W) 

Performance 
(KB/s) 

CPB 
(Cycle per byte) 

ChaCha20 Encryption 51 1.5671 194,772 9.242 

ChacCha20 Decryption 52 1.5300 194,847 9.238 

ChaCha20 Encryption - 
NEON 

24 2.0100 412,217 4.367 

ChacCha20 Decryption -
NEON 

25 2.2464 411,150 4.378 

AES-128-XTS 
Encryption 

147 2.1820 68,164 26.407 

AES-128-XTS 
Decryption 

305 1.9995 33,044 54.472 

AES-256-XTS 
Encryption 

203 2.1653 49,305 36.507 

AES-256-XTS 
Decryption 

428 1.8017 23,485 76.643 

Adiantum-XChaCha20 
Encryption 

69 1.9304 147,127 12.234 

Adiantum-XChaCha20 
Decryption 

69 1.8939 145,067 12.408 

Adiantum-XChaCha20 
Encryption - NEON 

35 2.6229 286,138 6.291 

Adiantum-XChaCha20 
Decryption - NEON 

36 2.4000 280,505 6.417 

CHAM 128/128-XTS 
Encryption 

110 2.1207 91,285 19.718 

CHAM 128/128-XTS 
Decryption 

136 2.1626 73,351 24.539 

CHAM 128/256-XTS 
Encryption 

130 2.1822 77,666 23.176 

CHAM 128/256-XTS 
Decryption 

162 2.1578 61,813 29.120 

LEA-128-XTS 
Encryption 

59  2.2332 170,596 10.551 

LEA-128-XTS 
Decryption 

66 2.2090 151,896 11.850 

LEA-256-XTS 
Encryption 

87 1.7131 115,555 15.577 

LEA-256-XTS 
Decryption 

88 1.9473 114, 405 15.734 
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On the ARM platform, the power consumption for encryption was higher than the power 

consumption for decryption. This is probably due to the hardware limitations of the ARM platform. 
Interestingly, the power consumption of the lightweight encryption algorithms did not show a 
significant difference compared to AES. 

 

Figure 5: Power Consumption - Encryption 

Figure 6: Power Consumption - Decryption 
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On Arm-based platforms, the ChaCha20 encryption algorithm was the most power-efficient. 

Specifically, when using instructions optimized for the NEON architecture, the ChaCha20 algorithm 
showed a speedup of approximately 52.4% in encryption and decryption speeds. Using NEON 
architecture instructions resulted in a 37.43% increase in power consumption despite the speedup. 

5 Conclusion 
In this paper, the power consumption of each encryption algorithm was measured on X86 and Arm 

platforms. The results showed that the power consumption of existing lightweight encryption 
algorithms is more energy efficient than encryption algorithms such as AES. The CHAM encryption 
algorithm, developed as a lightweight encryption algorithm, showed high energy efficiency on X86-
based platforms but was not as energy efficient as other encryption algorithms on ARM platforms. The 
ChaCha20 encryption algorithm showed low energy efficiency on X86 platforms but had the best 
energy efficiency on ARM platforms. LEA, another lightweight encryption algorithm, showed 
moderate energy efficiency on both X86 and ARM platforms. Our results show that X86-based and 
ARM-based platforms can improve energy efficiency by selecting and using cryptographic algorithms 
tailored to their respective CPU instruction sets and characteristics. Further research is needed to 
understand what makes the difference and how existing cryptographic algorithms can be optimized to 
improve energy efficiency for each platform. 
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