
Power consumption analysis of cryptographic
algorithms

Wonseok Choi1*, Laihyuk Park2, Youngjin Kim1 and Junsi Jeong1

1 Telecommunications Technology Association

{Wschoi, networker, jless}@tta.or.kr
2 Dept of Computer Science and Engineering, Seoul National University of Science and

Technology
lhpark@seoultech.ac.kr

Abstract

In this paper, we tested popular encryption algorithms' characteristics and optimization
efforts and measured their power consumption and performance according to the platform.
The aim is to determine the energy efficiency of encryption and decryption for each
encryption algorithm and contribute to improving energy efficiency in large data centers
and other areas where encryption is heavily used. The test results show that optimizations
using the CPU's instruction set significantly improve encryption and decryption time but
not energy efficiency. In particular, using NEON instructions on ARM-based platforms
resulted in performance gains but increased energy consumption. As the amount of data
transferred increases with the spread of 5G and the cloud, additional research should
continue to be conducted to improve the energy efficiency of cryptographic algorithms.

Keywords: Energy-efficient cryptographic algorithms, Power consumption of cryptography,
Energy-efficient computing

1 Introduction
The growth of non-face-to-face industries due to COVID-19 and the expansion of various

applications such as AI and cloud have led to a rapid increase in data centers, leading to a rapid increase
in power consumption. The top 20 U.S. companies owned 597 massive data centers in 2020, double the
number five years earlier. According to the IEA, data centers worldwide consumed between 200 and
250TWh of electricity in 2020, higher than the world's 16th largest consumer, South Africa (208TWh),
and estimated to consume about 1% of the world's electricity. This trend is expected to overgrow, and
to address the problem, Microsoft, Google, Meta, Intel, and others have formed the Open Compute
Project (OCP) to explore open, energy-efficient computing. In particular, with the advent of 5G,
encryption is becoming more critical for learning large amounts of data through AI, and the need to
analyze the amount of power consumed in encryption operations and make efforts to improve it is
increasing.

Various encryption algorithms have been developed, and most existing ones have been developed
by focusing on encryption speed and security strength. The power consumption of cryptographic
algorithms has not been a concern. Still, as mentioned above, countries that have identified the

The 7th International Conference on Mobile Internet Security (MobiSec’23), Dec. 19- 21, 2023, Okinawa, Japan, Article No. 42

∗Corresponding author: Telecommunications Technology Association, Gyeonggi-do, 13591, Republic of Korea, Tel: +82-
031-724-0114

Power consumption analysis of cryptographic algorithm Choi et al.

2

seriousness of computing power consumption in data centers are beginning to research and develop
hardware and software to improve power consumption. In line with this trend, it is necessary to develop
encryption algorithms suitable for various mobile devices with low power consumption.
Symmetric-key encryption algorithms currently in use are AES, ARIA, and SEED, while public-key
encryption methods include RSA and ECC.
Since this paper aims to analyze the power consumption of encryption algorithms, we selected an
algorithm developed for lightweight encryption. The Adiantum encryption algorithm is the most recent
algorithm developed by Google, and ChaCha20 and CHAM are all algorithms designed to speed up
and lighten existing encryption algorithms.
In this paper, we further analyzed the power consumption of the AES encryption algorithm to compare
it with these lightweight encryption algorithms. The purpose of this paper is to analyze the power
consumption of each encryption algorithm and suggest directions for the development of low-power
encryption algorithms.
This paper is organized as follows. First, we discuss the structure and characteristics of each
cryptographic algorithm. We then identify techniques for speeding up each cryptographic algorithm,
particularly how to increase processing speed by using processor-specific vector arithmetic instructions.
We then describe the test environment and test methods for each cryptographic algorithm. In this paper,
encryption algorithms implemented using processor-specific optimized instructions were used, and the
time required for encryption and decryption of each encryption algorithm was measured by repeated
testing. The power consumed is measured using a power analyzer, and the amount of power consumed
by each algorithm for encryption and decryption is calculated. Finally, the test results show the amount
of power consumed per byte for encryption and decryption and suggest future research directions.

2 Related Work
In this chapter, we will review the characteristics of cryptographic algorithms and the related

research that has been done to make them lighter and faster. Low-power cryptographic algorithms have
not been a focus of traditional cryptography researchers, so little research has been done on them.
However, energy-efficient cryptographic algorithms are very relevant to light-weighting, so that we
will discuss them.

2.1 AES (Advanced Encryption Standard)
AES (Advanced Encryption Standard) is currently the most widely used encryption algorithm,

developed to replace DES. A symmetric key algorithm uses the same key for encryption and decryption.
AES is a symmetric key algorithm that uses the same key for encryption and decryption. It has a free
key size of 128bit, 192bit, and 256bit and has an SPN (Substitution - Permutation Network) structure.
The SPN structure requires an inverse function in the encryption process, but it can be encrypted at
once without moving bits so that it can perform encryption operations efficiently [1]. AES stores 16
input bytes in a 4x4 matrix (state) in 16 one-byte units. A round of AES consists of four operations:
SubBytes, ShiftRows, MixColumns, and AddRoundKey. The SubBytes step organizes the message into
a square matrix and replaces each byte in the array using the S-box opesration. ShiftRows in AES are
done in bytes, unlike DES, which is done in bits. MixColumns performs a column-by-column function,
grouping four bytes into a 4X1 matrix and multiplying it with a 4x4 identity matrix to create a new
matrix. The multiplication operation is computed in GF (28). AddRoundKey is the process of
performing a subkey and XOR operation on each byte in the matrix during the round. The above four
steps are repeated 10 to 14 times per round, depending on the number of bits, to make AES work. The
operating modes are CBC, OFB, CFB, and GCM, with CBC and GCM modes being the most popular
as they allow for parallel processing.

Power consumption analysis of cryptographic algorithms Choi et al.

3

The AES encryption algorithm's most widely known optimization method is the look-up table-based
method proposed by Bertoni et al. [2]. In their paper, Bertoni et al. combine the AES algorithm's
SubBytes, ShiftRows, and MixColumns and generate a precomputed look-up table to apply to round
operations. While the existing AES algorithm requires 256 bytes of S-Box memory, the optimized
method requires four 32-bit tables with 256 entries, which means 4,096 bytes of memory space. In
addition, Bernstein et al. proposed a technique to speed up the algorithm by storing and reusing some
of the information in the operation using the characteristics of the CTR mode of the AES algorithm.

2.2 ChaCha20
ChaCha20 is an encryption algorithm that improves the existing Stream encryption algorithm

Salsa2008 to increase the spread per round. It has the same 128-bit constant, 256-bit key, 64-bit counter,
and 64-bit nonce as Salsa2008 and has the advantage of being able to encrypt and decrypt at high speed
based on ARX (add rotate XOR) and XOR.

ChaCha, a popular symmetric-key cryptographic algorithm, has been developed and optimized for
various platforms. On X86 platforms, 128-bit vectorization was first applied to speed up encryption
rounds, as ChaCha's four-round operations can be processed independently, allowing them to be
processed simultaneously via 128-bit vectors. With the development of processors, the AVX2
instruction, which can process 256-bit vector operations at once, appeared, and M. Goll and S. Gueron
discovered that two block functions using 128-bit vectors could be processed simultaneously using this
instruction. Later, the AVX512 was introduced to handle 512-bit vector operations, allowing four block
functions to be processed simultaneously, making encryption more efficient [3][4].

2.3 CHAM
The CHAM cryptographic algorithm was developed in Korea and proposed in 2017 (revised CHAM

submitted in 2019) through the Lightweight Cryptographic Algorithm Competition. CHAM is a block
cipher algorithm with a four-branch Feistel structure and supports three modes depending on the block
size and key size. The supported modes are shown in the table below. The CHAM encryption algorithm
was developed to be lightweight, and, significantly, it uses a stateless round-key technique that does
not store the state of the key, dramatically reducing storage space. It is also based on ARX operations,
which has the advantage of applying to low-performance processors. Seo et al. proposed an optimization
technique based on ARM-NEON processors' SIMD instructions (8x16 vector instructions) to perform
operations in parallel [5]. Song et al. obtained a performance improvement of 15.87% in CHAM 64/128
CTR mode by optimizing based on ARMv8 processors [6].

Cipher Plaintext Length Key Length Round Word Size
CHAM-64/128 64bit 128bit 88 16bit
CHAM-128/128 128bit 128bit 112 32bit
CHAM-128/256 128bit 256bit 120 32bit

Table 1: CHAM cipher mode

2.4 Adiantum
Google requires Android device manufacturers to make their devices capable of AES encryption.

Still, the reality is that AES encryption performance is very slow for low-end mobile devices and
connected devices, so this algorithm was developed to solve the problem. Block ciphers were designed
to enable parallel operations based on the XChaCha12 algorithm, minimizing the space for various
nonces and MACs and simplifying the rounds. This allows it to perform more than five times better on
ARMv7 devices than the AES-256-XTS encryption algorithm [7].

Power consumption analysis of cryptographic algorithm Choi et al.

4

3 Evaluation
This chapter describes the test platforms, test environment, and test procedures. To analyze the

power consumption of encryption algorithms, experiments were conducted on the X86 platform and
Raspberry Pi 4 for embedded use. The specific test environments are shown in the table below.

Platform Item Specification
X86 Platform CPU Intel i7-1165G7

Memory LPDDR4 16GB
SSD 1TB (NVMe 1.4)
OS Ubuntu 20.04 64bit
Kernel-Version 6.5.4

Embedded Platform CPU BCM2711 Quad-core 1.5GHz Arm Cortex-A72
Memory 8GB
OS Debian 11 bullseye 64bit
Kernel-Version 6.1

Table 2: Test Platforms Specification

The power analyzer used to measure the power consumption is the WT332 model from
YOKOGAWA. This model is a high-precision power analyzer corresponding to IEC 62301, with 5 ㎃
accuracy and a measurement resolution 10 ㎼. The details are shown in the table below.

Item Specification

Measurement accuracy 0.1% + 0.05% of Range

Frequency Bandwidth DC 0.1 ㎑ to 100 ㎑

Sampling Rate 100ks/s

Data Update Rate 100 ㎳, 250 ㎳, 500 ㎳

Table 3: Power Analyzer Specification

The figure below shows the overall test environment configuration. The X86 Platform and Arm
Platform were powered by the power analyzer to run the encryption algorithm. A separate test PC was
connected to the power analyzer via USB to monitor the power consumption while the encryption
algorithm was running, and the usage was recorded every 100 ㎳.
In addition, to calculate the net power consumption of the encryption algorithm, we measured the idle
power for 10 minutes before the test, averaged it, and subtracted it from the estimated power. The CPU
was set to the maximum frequency using the CPU Governor command, as low power mode can affect
the power consumption calculation.

Power consumption analysis of cryptographic algorithms Choi et al.

5

4 Test Results
The results show a significant difference in power consumption depending on the encryption

algorithm. All tests were performed with a buffer size of 4096 bytes and 10,000 cycles. When
encryption and decryption were performed repeatedly, the power consumption of each was measured.
For the Arm platform, we measured both with and without NEON-based instructions.

Cipher Algorithm Run Time
(s)

Net Power
Consumption

(W)

Performance
(KB/s)

CPB
(Cycle per byte)

ChaCha20 Encryption 16 13.7475 655,403 7.171

ChacCha20 Decryption 15 13.8720 858,313 5.476

AES-128-XTS
Encryption

57 13.7242 184,436 25.483

AES-128-XTS
Decryption

100 14.9976 102,769 45.734

AES-256-XTS
Encryption

79 13.2881 131,705 35.686

AES-256-XTS
Decryption

143 12.0613 72,101 65.186

Adiantum-XChaCha20
Encryption

21 14.3657 513,948 9.145

Adiantum-XChaCha20
Decryption

15 14.4480 507,349 9.264

CHAM 128/128-XTS
Encryption

46 12.1461 225,518 20.841

Figure 1: Test Configuration

Power consumption analysis of cryptographic algorithm Choi et al.

6

Table 4: Test results (X86 Platform)

On the X86 platform, the ChaCha20 encryption algorithm performed best. Google's Adiantum
algorithm, which is based on XChaCha20, also performed as well as ChaCha20. The CHAM128/128-
XTS encryption algorithm consumed the least power when encrypting, as shown in Figure 2. Unusually,
the CHAM 128/256-XTS method was measured to consume the least power for decryption. Figure 4
shows the sum of encryption power consumption and decryption power consumption, or total power
consumption. CHAM 128/256-XTS performed the best in terms of total power consumption. We
expected LEA and other lightweight encryption algorithms to measure lower, but they consumed more
power than the AES encryption algorithm.

CHAM 128/128-XTS
Decryption

68 13.1824 151,997 30.922

CHAM 128/256-XTS
Encryption

54 13.1867 191,611 24.529

CHAM 128/256-XTS
Decryption

82 11.9371 127,210 36.947

LEA-128-XTS
Encryption

16 15.2100 632,616 7.429

LEA-128-XTS
Decryption

24 13.9500 435,234 10.799

LEA-256-XTS
Encryption

22 15.2836 487,460 9.642

LEA-256-XTS
Decryption

31 13.8542 331,178 14.192

Figure 2: Power Consumption - Encryption

Power consumption analysis of cryptographic algorithms Choi et al.

7

The results of encrypting and decrypting each encryption algorithm on the ARM platform are shown
below. The ChaCaha20 algorithm using the ARM-optimized NEON instructions performed best on the
ARM platform.

Figure 3: Power Consumption - Decryption

Figure 4: Total Power Consumption

Power consumption analysis of cryptographic algorithm Choi et al.

8

Table 5: Test results (Arm Platform)

Cipher Algorithm Run Time
(s)

Net Power
Consumption

(W)

Performance
(KB/s)

CPB
(Cycle per byte)

ChaCha20 Encryption 51 1.5671 194,772 9.242

ChacCha20 Decryption 52 1.5300 194,847 9.238

ChaCha20 Encryption -
NEON

24 2.0100 412,217 4.367

ChacCha20 Decryption -
NEON

25 2.2464 411,150 4.378

AES-128-XTS
Encryption

147 2.1820 68,164 26.407

AES-128-XTS
Decryption

305 1.9995 33,044 54.472

AES-256-XTS
Encryption

203 2.1653 49,305 36.507

AES-256-XTS
Decryption

428 1.8017 23,485 76.643

Adiantum-XChaCha20
Encryption

69 1.9304 147,127 12.234

Adiantum-XChaCha20
Decryption

69 1.8939 145,067 12.408

Adiantum-XChaCha20
Encryption - NEON

35 2.6229 286,138 6.291

Adiantum-XChaCha20
Decryption - NEON

36 2.4000 280,505 6.417

CHAM 128/128-XTS
Encryption

110 2.1207 91,285 19.718

CHAM 128/128-XTS
Decryption

136 2.1626 73,351 24.539

CHAM 128/256-XTS
Encryption

130 2.1822 77,666 23.176

CHAM 128/256-XTS
Decryption

162 2.1578 61,813 29.120

LEA-128-XTS
Encryption

59 2.2332 170,596 10.551

LEA-128-XTS
Decryption

66 2.2090 151,896 11.850

LEA-256-XTS
Encryption

87 1.7131 115,555 15.577

LEA-256-XTS
Decryption

88 1.9473 114, 405 15.734

Power consumption analysis of cryptographic algorithms Choi et al.

9

On the ARM platform, the power consumption for encryption was higher than the power

consumption for decryption. This is probably due to the hardware limitations of the ARM platform.
Interestingly, the power consumption of the lightweight encryption algorithms did not show a
significant difference compared to AES.

Figure 5: Power Consumption - Encryption

Figure 6: Power Consumption - Decryption

Power consumption analysis of cryptographic algorithm Choi et al.

10

On Arm-based platforms, the ChaCha20 encryption algorithm was the most power-efficient.

Specifically, when using instructions optimized for the NEON architecture, the ChaCha20 algorithm
showed a speedup of approximately 52.4% in encryption and decryption speeds. Using NEON
architecture instructions resulted in a 37.43% increase in power consumption despite the speedup.

5 Conclusion
In this paper, the power consumption of each encryption algorithm was measured on X86 and Arm

platforms. The results showed that the power consumption of existing lightweight encryption
algorithms is more energy efficient than encryption algorithms such as AES. The CHAM encryption
algorithm, developed as a lightweight encryption algorithm, showed high energy efficiency on X86-
based platforms but was not as energy efficient as other encryption algorithms on ARM platforms. The
ChaCha20 encryption algorithm showed low energy efficiency on X86 platforms but had the best
energy efficiency on ARM platforms. LEA, another lightweight encryption algorithm, showed
moderate energy efficiency on both X86 and ARM platforms. Our results show that X86-based and
ARM-based platforms can improve energy efficiency by selecting and using cryptographic algorithms
tailored to their respective CPU instruction sets and characteristics. Further research is needed to
understand what makes the difference and how existing cryptographic algorithms can be optimized to
improve energy efficiency for each platform.

Acknowledgments
This research was supported by the MSIT (Ministry of Science and ICT), Korea, and supported by the
IITP (Institute of Information & communications Technology Planning & Evaluation). (No.2022-0-

Figure 7: Total Power Consumption

Power consumption analysis of cryptographic algorithms Choi et al.

11

00979, Development of technology and test criteria for evaluating the security of self-driving vehicle
data and V2X communication network.).

References
[1] NIST, “Advanced Encryption Standard (AES),” FIPS PUB 197, Nov. 2001.
[2] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and Stefano Marchesin,

“Efficient Software Implementation of AES on 32-Bit Platform”, Proceedings of CHES'02, volume
2523 of Lecture Notes in Computer Science, pp. 129-142, 2003

[3] Goll, M.; Gueron, S. Vectorization on ChaCha stream cipher. In Proceedings of the 2014 11th
International Conference on Information Technology: New Generations, Las Vegas, NV, USA, pp.
612–615, April 2014.

[4] Langley, A.: ChaCha20 and Poly1305 based Cipher Suites for TLS Draft 02. IETF DRAFT 02,
IETF (2013), http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-02

[5] Changho Seo et al., “Research for Speed Improvement Method of Lightweight Block Cipher CHAM
using NEON SIMD,” Journal of KIISE, Vol.46, No.5, pp.485-491, May. 2019.

[6] Song, JinGyo, Seo, Seog Chung. “Efficient Parallel Implementation of CTR Mode of ARX-Based
Block Ciphers on ARMv8 Microcontrollers”, Applied sciences, vol.11, no.6, 2548

[7] Paul Crowley and Eric Biggers, "Adiantum: length-preserving encryption for entry-level
processors," IACR Transactions on Symmetric Cryptology, Vol. 2018, No. 4, pp. 39–61.

[8] Y.B. Kim, H.D. Kwon, S.W. An, H.J. Seo, and S.C. Seo, “Efficient implementation of ARX-based
block ciphers on 8-bit AVR microcontrollers”, Multidisciplinary Digital Publishing Institute
Mathematics, 8(10), 1837, pp 1-22, Oct. 2020.

	1 Introduction
	2 Related Work
	2.1 AES (Advanced Encryption Standard)
	2.2 ChaCha20
	2.3 CHAM
	2.4 Adiantum

	3 Evaluation
	4 Test Results
	5 Conclusion
	Acknowledgments
	References

