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Abstract

In the digital age, privacy is increasingly important. The General Data Protection Regu-
lation (GDPR) [1] lays out rules for how data is collected and protected, posing challenges
for many organizations. While there are several privacy preserving techniques, fully homo-
morphic encryption (FHE) stands out as the most mathematically secure. FHE enables
computations on encrypted data without the need for decryption. However, it introduces
significant computational overhead compared to non-encrypted computations. In this pa-
per, we introduce a heterogeneous computing framework designed to accelerate fully ho-
momorphic encryption.
This framework encompasses homomorphic evaluations on multiple platforms including
CPU, GPU, and FPGA, paired with a tailored task scheduling algorithm. Each platform
is equipped with comprehensive FHE functionalities and employs state-of-the-art imple-
mentations, allowing for standalone evaluation of FHE applications. The task scheduling
algorithm strategically divides the computational tasks across the heterogeneous system,
taking into account data transfer times to optimize application performance. Results show
that the system reduces the latency effectively with additional computational platforms
and provides more flexibility and accessibility of FHE for contemporary applications.

Keywords: Heterogeneous system, Homomorphic encryption, Hardware, accelerators,
Parallel architectures, Security and privacy, Cryptography

1 Introduction

In today’s data-driven world, where growing privacy concerns coincide with the rise of cloud
computing that processes vast amounts of sensitive information, the demand for privacy preserv-
ing techniques has notably increased. Techniques such as TEE, MPC, and HE are frequently
employed to address these concerns, and we provide brief descriptions of each.

Trusted Execution Environments (TEEs) provide a secure area within a main processor
that ensures data and operations are protected from external threats. Meanwhile, Multi-Party
Computation (MPC) allows multiple parties to collaboratively compute a function over their
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inputs without revealing those inputs to each other. Among these techniques, Fully Homomor-
phic Encryption (FHE) stands out as the most mathematically secure. It allows operations on
encrypted data without the need to decrypt it, which is a significant advancement over standard
encryption methods that expose data during processing.

Introduced in 2009 [2], FHE had its limitations in the beginning, but intensive research has
transformed it into a practical tool for various tasks, finding applications in areas like deep
learning and linear algebra. Both the private sector and governments are now heavily investing
in its potential. However, the speed challenge persists. FHE is notably slower than working
with non-encrypted data. One promising avenue to tackle this is the use of hardware solutions,
specifically FHE accelerators [3, 4, 5, 6, 7, 8, 9].

However, while special-purposed FHE hardware accelerators may provide great speedups,
their applications can be very limited and it can be expensive to design and manufacture
such special chips. Thus, although various FHE accelerator chips have been proposed [3, 4,
5, 6], they have not been integrated into current production systems yet. On the other hand,
graphical processing units (GPU) offer high computing power with affordable prices and are
widely available in many systems, including mobile phones, which make them an alternative
solutions for accelerating FHE [10, 11, 12, 13, 14, 15], although the acceleration from GPUs are
less than special-purposed chips.

In this research work, we propose and develop an innovative heterogeneous FHE computing
framework to accelerate the FHE computations with CPUs, GPUs, and accelerator chips. This
framework automates the design space exploration process to provision and optimize system
configurations for the targeted applications. This paper will present the proposed framework
with experimental results to demonstrate its effectiveness. The remaining of this paper is
organized as follows: Sec 2 provides the necessary background and context; Sec 3 describes our
research methodology and approach; Sec 4 presents the evaluation, experiments, and results;
and Sec 5 concludes the paper, highlighting key takeaways and possible future directions.

2 Background

Homomorphic Encryption is an encryption paradigm that allows for computations on encrypted
data without the need to decrypt it. In addition to the usual Enc() and Dec() functions found
in standard public key encryption, HE includes functions for homomorphic evaluations. Some
HE schemes have a limited number of these evaluations. When the limits are reached, the data
must be decrypted and then re-encrypted to continue with the computation. For unlimited com-
putations, an extra step called bootstrapping is needed. Incorporating bootstrapping at various
points during the computation allows the system to achieve fully homomorphic encryption.

Modern FHE schemes mostly rely on lattice-based cryptography. A common feature among
them is the encoding of data vectors into plaintexts, facilitating SIMD (Single Instruction,
Multiple Data) operations. However, the data types vary across schemes. BFV [16] and BGV
[17] are designed to encode vectors of integers, while CKKS [18] allows for the encoding of real
numbers. FHEW [19] and TFHE [20], on the other hand, encode binary data and support
homomorphic boolean operations. All these schemes employ the RLWE (Ring Learning With
Errors) assumption [21] to encrypt their inputs into ciphertexts.

While the proposed heterogeneous computing framework may be implemented to support
the aforementioned algorithms, as a case study, we choose to accelerate the CKKS scheme
in the open-source Lattigo libraries. The following subsections further discuss CKKS, men-
tion the related works on FHE accelerators, and survey the challenges to scheduling tasks on
heterogeneous computing systems.
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2.1 The CKKS Scheme

Consider the CKKS scheme, a vector of complex data from CN/2 is first encoded as a polynomial
in Z/xN + 1, where N is the polynomial degree. Subsequently, this polynomial undergoes
encryption, resulting in a ciphertext in ZQ/x

N + 1. Here, Q is expressed as the product
q0q1...qL, with L denoting the prime depth.

The encryption process can be depicted as:

ct = Enc(m) = (as+ e+m, a) (1)

where a is a randomly sampled polynomial from RQ. s stands for the secret key, e is
a randomly sampled small error, and m represents the encoded plaintext polynomial. For
decryption, the process is:

Dec(ct) = ct[0]− ct[1] · s = m+ e ≈ m (2)

The result is close to m when the error e remains small relative to m. If e grows too large,
the decryption can fail.

The CKKS scheme supports six homomorphic operations, including HAdd, HMul, Rescale,
and Rotate. As illustrated in Figure 1, these CKKS operators manipulate plaintext and/or
ciphertext data in vectors, where each vector contains N/2 elements, and each element can hold
an logQ-bit integer, which actually represents a floating-point number by dividing it with a
scaling factor. The current efficient implementation of CKKS [22] utilizes the residue number
system (RNS). This system divides a coefficient of a polynomial into multiple smaller num-
bers associated with smaller primes. Computations in the smaller prime domain (q0q1...qL)
are isomorphic to those in the original larger prime (Q). This approach allows for further
parallelization of computations, leading to enhanced speedup opportunities. Furthermore, each
prime level involves in rescaling the ciphertext to maintain it at a desired scale, without causing
an exponential increase in plaintext. With each rescaling, the level drops and the ciphertext
size decreases, resulting in faster computations.

In the CKKS scheme, bootstrapping refreshes the ciphertext level, ensuring that the data
remains within permissible noise limits, thus preserving decryption accuracy. Essentially, boot-
strapping homomorphically decrypts to reset the noise in the ciphertext. As depicted in Fig-
ure 2, bootstrapping involves multiple steps and consumes several levels, leaving the rest for
homomorphic evaluations in various applications. Notably, several studies [23, 24, 25, 26] aimed
at reducing their complexity to make FHE more practical for everyday use.

2.2 FHE Accelerators

Hardware accelerators for homomorphic encryption have evolved rapidly, with innovations
across ASICs and FPGAs addressing various HE tasks. In the realm of ASIC-based solu-
tions, designs such as [3, 4, 5, 6] have introduced algorithmic enhancements, programmability,
and the capacity to handle expensive FHE programs. These ASIC implementations have real-
ized speedups in the tens of thousands compared to CPUs, leading to a promising future for
widespread FHE applications.

On the FPGA landscape, works like [7, 8, 9] offer diverse contributions. HEAX pioneers
acceleration in keyswitching through its NTT engine while FAB and Poseidon specialize in
bootstrappable FHE but adopt distinct methodologies. In performance metrics, FPGAs record
speedups ranging from hundreds to thousands over CPUs, serving as a transitional bridge
between CPUs and high-performance ASICs.
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Figure 1: Homomorphic operations on vectors of data

Figure 2: Boostrapping
process, where QL is
maximum level and Ql

In GPU-based research, [11, 12] tailors variants of NTT and algorithm for enhanced GPU
performance, while [10, 13] focuses on the organization of overarching operations on GPUs.
Specifically targeting neural networks, [14] optimizes HE CNNs on GPUs to provide the real
use case. Finally, [15] investigates HE on multi-GPU setups, detailing its performance and
scalability aspects.

2.3 Task Scheduling on Heterogeneous Systems

To enhance job dispatching efficiency across heterogeneous machines, it is imperative to employ
well-suited task-scheduling algorithms. In pursuit of this objective, we have implemented two
list-based algorithms, namely HEFT (Heterogeneous Earliest Finish Time) and PEFT (Predict
Earliest Finish Time), within our established heterogeneous computing system.

HEFT [27], an extensively validated algorithm in the realm of heterogeneous computing,
leverages the fundamental concepts of upward and downward rank, EST (Earliest Start Time),
and EFT (Earliest Finish Time). It meticulously evaluates the tasks within the workflow, seek-
ing the task with the highest upward rank. Once identified, this task is intelligently dispatched
to an available machine with the smallest EFT. HEFT’s efficacy lies in its ability to make
informed decisions based on task properties and machine availability.

PEFT [28], an extension building upon the foundation of HEFT and incorporating a Look-
ahead algorithm, introduces the concept of Predicted Earliest Finish Time. PEFT employs a
2D OCT (Optimistic Cost Table) to calculate the rank of each task, optimizing the selection
process. The task with the highest rank, often indicative of the shortest expected completion
time, is designated as the selected task. Notably, PEFT streamlines computation time by
considering multiple layers of task successors.

3 Methodology

In this section, we present a platform-aware heterogeneous computing framework for acceler-
ating FHE. In addition to the software-level compiler optimization, it also includes optimized
hardware backends and profile-guided optimization (PGO) to exploit the full potential of the
target platform and support hardware/software codesign. Figure 3 gives a high-level overview
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of the framework. Given an application and user requirements, the proposed framework gen-
erates the data flow graph by analyzing the FHE operations invoked in the program and then
compiles the FHE operations into HE microinstructions by considering the configuration of the
target hardware platform. The HE microinstructions are scheduled to execute on a variety of
accelerators. For each accelerator, the framework provide a backend to execute the HE microin-
structions. In addition, the framework collects performance-related events during the runtime
to facilitate PGO, which allows the compiler to improve the scheduling with the performance
profile collected from previous runs. The profile is also useful for programming the FPGA and
improving the system design.

Figure 3: Proposed framework

The major components in the framework are:

1. HE Compiler: This component transforms the arithmetic operations of an HE applica-
tion into a data flow graph, which is a directional acyclic graph (DAG) for HE operations.
This involves efficiently packing data into vectors and conducting homomorphic operations
on these vectors with correctness and security. The framework integrates this compiler
as a plug-gable layer, drawing from various works such as EVA [29], CHET [30], and
nGraph-HE [31] to facilitate the generation of the data flow graph.

2. Heterogeneous Scheduler: The heterogeneous scheduler divides the HE operations into
different partitions with the overall objective of minimizing total execution time across
the heterogeneous system. It distributes the workload considering the cost of different
accelerators and their interconnects, providing efficient coarse-grained scheduling. More
insights on the Heterogeneous Scheduler can be found in Section 3.1.

3. HE Microinstruction Scheduler: This scheduler further expands the HE operations
into HE microinstructions and schedules them considering the hardware. This step opti-
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mizes the program through fine-grained scheduling, taking into account different system
architectures. Section 3.2 elaborates on the HE Microinstruction Scheduler.

4. Accelerator Backends: These components are responsible for executing HE operations
on designated systems. We have developed HE accelerators for FPGA and adapted mod-
ified codes from [32] and [13] for the integration of CPU and GPU systems, respectively.
Section 3.3 provides detailed information about each platform.

5. Profile-guided optimization: The framework includes profiling facilities to extract
performance-related events and metrics to support profile-guided optimization on microin-
struction scheduling and system design. The profiled data are fed back to the scheduler
to optimize the schedule, as discussed in Section 3.2 and are also used to calibrate the
timing models in the simulator to improve the simulation results.

3.1 Heterogeneous Scheduler

Fig 4 shows the organization of the heterogeneous system. This system comprises a typical
node on a server host, equipped with a CPU and four PCIe slots. Each slot can accommodate
either an FPGA or a GPU accelerator.

Figure 4: The heterogeneous system

The scheduler divides the data flow graph across the heterogeneous systems, as depicted in
Fig 4. To achieve this, the scheduler requires:

1. Task Cost on Different Systems: We determine this cost through direct measurements of
real systems. For various applications, we create tables for different levels and operations.

2. Weighted DAG : The weighted Directed Acyclic Graph (DAG) is derived from the data
flow graph. The edges of this graph are calculated by dividing the ciphertext size of the
node by a reference bandwidth.
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3. Communication Bandwidth: This represents a two-dimensional matrix detailing the band-
width between two different systems. As an illustration, in Fig 4, the GPU-to-GPU
bandwidth is 600GB/s, while the FPGA-to-CPU bandwidth is 16GB/s. If a direct link is
absent between two systems, we choose the minimal bandwidth from all available routes
connecting the two nodes. For instance, the bandwidth between FPGA and GPU is set
at 16GB/s. After filling up the matrix, it is then normalized by the reference bandwidth.

In Fig. 5, we illustrate an example of the required inputs. It’s important to note that we
did not include the latency matrix since its impact is negligible compared to data transfer time
and computation time. Once these inputs are established, we apply a scheduling algorithm to
them. The algorithm is modular, and for our evaluation, we utilize the basic HEFT [27]. The
algorithm determines the start and end times for each task across the heterogeneous systems.
The system with the latest end time then dictates the overall execution time for the entire
heterogeneous system.

Figure 5: Inputs of the scheduling algorithm. The example depicts results after applying the
HEFT algorithm to a setup of 2 FPGAs and 1 GPU. Green and orange tasks are scheduled on
the FPGAs, while the purple task is scheduled on the GPU.

3.2 Generating and Scheduling HE Microinstructions

We reference the state-of-the-art CKKS algorithm [25] to implement HE operations. Each
homomorphic operation is composed of combinations of HE microinstructions, which are es-
sentially polynomial operations, such as the number theoretic transform (NTT), and include
polynomial multiplication and addition. On systems like CPUs and GPUs, these polynomial
operations are executed using either the AVX core or the CUDA core collaboratively. Con-
sequently, they cannot process two distinct microinstructions simultaneously. As depicted in
Figure 3, neither the CPU nor the GPU is equipped with a scheduler. On the other hand, plat-
forms like FPGAs or ASICs have distinct functional units for different polynomial operations.
This design enables the simultaneous execution of microinstructions. Additionally, the FPGA
or ASIC requires additional scheduling for load/store operations to and from the scratchpad,
as illustrated in Figure 7.
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Precisely scheduling microinstructions could yield millions of such instructions and would be
time-consuming. As an alternative, we leverage static controls to manage the data flow between
various functional units, carrying out the execution of HE operations, such as HMul. This
strategy might simultaneously engage multiple functional units (e.g., polyadd and polymul).
The criteria for scheduling are straightforward: an operation is issued if (1) all its input data
is stored on-chip and there is available space for the output, and (2) the functional units are
unoccupied. Regarding the eviction policy, each operation receives an ID based on the user-
defined sequence of HE operations. The operation node with the highest ID among its children
is selected for eviction.

Obviously, the aforementioned scheduling is highly dependent on the flow of tasks and data.
Thus, we place probes in the framework to profile the target programs and extract the control
and data flows during the run time, in case the compiler cannot accurately predict the program
behavior. The added profiling facility enables profile-guided optimization (PGO), allowing
the developer and the compiler to identifies hotspots in the execution path and fine-tune the
schedule with program traces from previous runs. In addition, the profile is also useful to the
exploration of the design space for FPGA-based FHE accelerators as well as the entire system
architecture.

Figure 6: CPU/GPU FHE system. Figure 7: FPGA FHE system.

3.3 Accelerator Backends

For the CPU/GPU FHE system, We build upon the CPU [32] and GPU [13] works. Given the
challenges of managing cache in CPU and GPU architectures, as illustrated in Fig 6, results
are consistently stored to global memory following each homomorphic operation. However,
operations might still benefit from cache usage.

Fig 7 illustrates the organization of the FPGA system. The system features a global memory
that stores the initial data. Different from the CPU/GPU FHE system, there are microinstruc-
tions loading/storing data to/from on-chip scratchpad. On-chip data can be streamed into
functional units for HE microinstruction execution. Below, we provide a brief overview of the
functional units required for carrying out HE operations.

1. Addition and Multiplication Unit : These units handle element-wise polynomial addition
and multiplication, functioning as basic arithmetic circuits without the need for buffers.
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2. Number Theoretic Transform (NTT) Unit : This unit uses a computational method similar
to the Fast Fourier Transform (FFT) but operates under modular arithmetic. We adapted
the design from [33] and further decomposed the NTT into three recursive steps. This
strategy balances the FPGA’s resource constraints while targeting optimal performance.

3. Automorphism Unit : Designed primarily for data rearrangement, this unit is used for the
Rotate operation. We’ve allocated large buffers to store an entire polynomial on-chip,
enabling rearrangement without off-chip accesses.

4. Residue Number System (RNS) Unit : During HE computations, polynomial multiplication-
and-accumulation operations are common, particularly in keyswitching. In this unit, we’ve
integrated the multiplication and addition units and paired them with a buffer for tem-
porary storage.

4 Evaluation

We evaluate the proposed framework in this section. First, we constructed an experimental
heterogeneous computing environment with multiple GPUs and FPGAs, as described in Sec-
tion 4.1 to validate that the proposed framework is capable of exploiting all the processor units
in the system. Then, we measure the performance of the proposed framework with a set of HE
application benchmarks to evaluate the effects of optimized scheduling and explore the system
design space in Section 4.2.

4.1 Environmental Setup

In our FPGA design, we employ Verilog and utilize Xilinx Vivado 2022.2 for synthesis, achieving
an operational frequency of 300 MHz. We deploy our design on the Xilinx Alveo U280 FPGA
card, equipped with 8 GB of HBM2, offering a bandwidth of up to 460 GB/s.

For our CPU and GPU configuration, the host runs Ubuntu 20.04 with an AMD Ryzen
Threadripper 3970X 32-Core Processor operating at 2.20 GHz. This setup is equipped with an
RTX3090 GPU using the CUDA 11.3 library.

In terms of system interconnects, we base our architecture on the following links:

1. A PCIe x16 Gen 4 link between the CPU and FPGA.

2. A PCIe x16 Gen 3 link connecting the CPU and GPU.

3. NVLink 3rd Gen for inter-GPU communication [34].

4. QSFP28 x2 links for inter-FPGA communication [35].

Our evaluations encompass various combinations of FPGAs and GPUs; consequently, band-
widths are adjusted according to the configurations. We acquire results from single FPGA,
GPU, and CPU setups and simulate the heterogeneous configurations.

4.2 Resulted Performance and Discussions

We used three types of applications, i.e. inference, logistic regression, and bootstrapping,
to benchmark the performance of the proposed framework. For homomorphic inference, we
report performance inferencing the MNIST and Cifar10 described in LoLa [36]. We further
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evaluate homomorphic logistic regression as outlined in [37], employing L=38 and conducting
4 iterations plus one bootstrapping, while presenting the time required per batch for a single
iteration. Lastly, we evaluate the bootstrapping process, refreshing a ciphertext at the lowest
level using parameters with N=65536 and L=38.

We first evaluate the efficacy of the scheduling algorithm, as depicted in Table 1. The
experimental setup involved 2 FPGAs and GPUs with a host CPU. Compared to the HEFT
scheduling algorithm, the naive method randomly selects an unoccupied device to execute the
task, transferring all necessary inputs for that task to the device before execution. We notice
that for low-depth tasks without bootstrapping, like MNIST and Cifar10, the naive method
works comparably to HEFT. However, for programs including bootstrapping (long-depth DAG),
its performance is hindered by unbalanced workloads across the heterogeneous system, as child
tasks must await the completion of all their parent tasks, which may include tasks from slower
devices.

Table 1: Latency (ms) and speedup of FHE applications using different scheduling. The
experimental system contains 2 FPGAs and GPUs.

Scheduling MNIST Cifar10 LR Bootstrapping
Naive 8.7 (1.00X) 9123.5 (1.00X) 316.2 (1.00X) 436.2 (1.00X)
HEFT 8.2 (1.06X) 8767.8 (1.04X) 235.1 (1.35X) 185.9 (2.35X)

We then report the latency of FHE applications on different system configurations in Ta-
ble 2. There is a performance difference of 2x-5x between FPGA and GPU across different
applications. For applications without bootstrapping, like MNIST and Cifar10, the FPGA
tends to exhibit superior performance. Conversely, for logistic regression and bootstrapping,
the excessive off-chip memory access for bootstrapping data and limited on-chip memory on
FPGA cause the wait time for memory to dominate, hence the performance difference is not
significant.

Table 2: Latency (ms) of FHE applications on different system configurations
Design MNIST Cifar10 LR Bootstrapping
1-FPGA 19.3 26524.5 837.0 688.3
1-GPU 81.5 59569.4 1150.7 769.1

W
it
h
h
os
t
C
P
U

2-FPGA 9.6 12697.2 411.4 338.9
4-FPGA 5.2 6487.5 208.2 181.5
2-GPU 39.9 28677.8 569.8 381.6
4-GPU 20.7 14542.1 291.9 207.4
1-FPGA & 3-GPU 11.1 10952.2 256.4 188.7
2-FPGA & 2-GPU 8.2 8767.8 235.1 185.9
3-FPGA & 1-GPU 6.4 7362.9 219.3 176.5

In multi-FPGA and GPU settings, the speedup is almost 2x or 4x (with additional aid
of CPU) when the number of FPGAs or GPUs is doubled or quadrupled. This is due to each
application being divisible into thousands of smaller tasks, with their differences being minimal,
leading to a balanced workload in the data flow graph. Additionally, the communication to
computation ratio is also low, around 1 to 10, resulting in low overhead from data transfer. In
the heterogeneous settings, it’s apparent that additional hardware contributes to reducing the
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program’s latency. Through the scheduling results, we found that every device nearly ends at
the same time, and with high utilization across all devices. This demonstrates the effectiveness
of the scheduling algorithm and its capacity to balance the workloads across heterogeneous
systems.

5 Conclusion

We have developed a heterogeneous computing framework aimed at accelerating fully homo-
morphic encryption. This framework encompasses extensive FHE functionalities across various
platforms, including CPU, GPU, and FPGA. Additionally, it features a heterogeneous system
simulator, complemented by a heterogeneous scheduler. Our evaluation across several applica-
tions demonstrates that the system effectively reduces latency with the integration of additional
computational platforms. This allows various users to deploy a heterogeneous system for FHE
tailored to their specific conditions. While GPUs are more accessible and cost-effective, FP-
GAs, although offering superior performance, require a steeper learning and utilization curve.
Even utilizing a single CPU, the application can still operate effectively. Overall, this provides
a robust solution that affords users the flexibility to navigate between cost, ease of use, and
computational power, ensuring that secure computations via FHE can be effectively achieved
under a variety of system configurations and user expertise levels.
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