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1 Introduction

Differential cryptanalysis [1] is one of the primary cryptanalysis techniques. If it is possible
to predict the key by analyzing the differential characteristic, the cryptographic algorithm can
be considered insecurely designed. Distinguishing data that satisfies differential characteristics
(input/output differentials) from random data is referred to as a distinguisher attack, which is
more powerful than an exhaustive search.

Recently, with the development of deep learning, various studies on deep learning-based
distinguishers have been presented [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Deep learning is well-suited
for probabilistically distinguishing data that satisfies differential characteristics, as it has the
capability to make probabilistic predictions on data. For this reason, many studies on neural
distinguisher are being conducted, but research on deep learning-based distingusher for FPE
scheme, has not yet been conducted. In this work, for the first time, we propose a neural
distinguisher based on deep learning for considering input differences. Significantly, our results
demonstrate that the deep learning-based discriminator is well-suited for format-preserving
encryption schemes as well.
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Distinguishing data that satisfies the differential characteristic (input/output differ- 
ence) from random data is called a distinguisher attack (and this can be utilized in differ- 
ential attacks). If the key can be inferred by analyzing the output difference according to 
the input difference, the encryption algorithm is designed to be insecure. At CRYPTO’19, 
Gohr presents the first deep learning-based distinguisher for round-reduced SPECK. Build- 
ing upon Gohr’s work, various works have been conducted. Among many other works, 
inspired by Baksi et al.’s work presented at DATE’21, we propose the first neural distin- 
guisher using differences on format-preserving encryption (FPE) scheme. In a nutshell, 
our work achieves valid accuracy (0.98 in 8 rounds on the number domain and 0.55 in 
2 rounds on the lowercase domain) with 08 can be achieved in both domains input dif- 
ference model. Our work utilizes the differential characteristics employed in the classical 
distinguisher of presented in Dunkelman et al.’s ePrint’20 paper. They use SKINNY as the 
encryption algorithm for, whereas we employ a standard implementation with AES encryp- 
tion. Nevertheless, it is worth noting that the 0||K input difference remains independent of 
the internal encryption function. This result demonstrates the validity of our distinguisher, 
indicating its applicability to various variants of.



Deep Learning-Based Neural Distinguisher for Format-Preserving Encryption Scheme FF3 Kim et al.

1.1 Our Contribution

1.1.1 First neural distinguisher for

We propose the first neural distinguisher for. Our neural distinguisher works successfully in the
number and lowercase domains, and can be effectively utilized for cryptanalysis using differential
characteristics.

1.1.2 Neural distinguisher that can be used for distinguishing attacks against
variants of

While format-preserving encryption includes an encryption function, the presence of differential
characteristics remains independent of the specific encryption function. Consequently, our neu-
ral distinguisher can be effectively employed for distinguisher attacks targeting various variants
of.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, the backgrounds of the
format-preserving encryption and the neural distinguisher. In Section 3, we present the neu-
ral distinguisher for. In Section 4, we evaluate and analyze the performance of our neural
distinguisher for. Finally, Section 5 concludes the paper.

2 Background

2.1 Format Preserving Encryption

Unlike general block ciphers, FPE [12] is an encryption scheme that ensures that the form
of plaintext remains intact in the ciphertext. That is, when plaintext in a certain domain
(number or character) is encrypted, the ciphertext also belongs to the same domain and has
the same length. is a cipher designated as a NIST standard among FPE. It has 8 rounds,
and its block size and key size of 32-bit and 128-bit, respectively. It is designed as a Feistel
structure, and an encryption function (e.g., AES) is used as an internal round function. The
choice of encryption function within the FPE framework can be altered [13, 14]. That is, there
are various variants of the structure of FPE. FPE is particularly useful in cases where data
format is critical for functionality or compatibility with existing systems. For example, when
encrypting credit card numbers stored in a database, FPE can be used to ensure that the
encrypted value remains similar to a valid credit card number, enabling processing by payment
systems without modifications. Additionally, by encrypting data in a way that preserves its
original format, the data using FPE can be seamlessly integrated with existing applications and
databases that expect data to conform to a specific format.

2.2 Artificial Neural Network

Artificial neural networks [15] consist of multiple layers, each composed of multiple neurons.
Neurons calculate their final values by summing the weighted values from the previous layer
and passing them through an activation function. This process is repeated for each layer,
starting from the input layer. The network learns by minimizing the difference between the
predicted output and the actual labels using a loss function (e.g. Binary Crossentropy, Cate-
gorical Crossentropy, Mean Squared Error, etc.). In this process, an optimization function (e.g.
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Stochastic gradient descent (SGD), RMSprop, Adam) is used for effective minimization. Once
trained, the network can predict using its trained weights. A well-trained network can make
robust predictions even on untrained data, and the design goal is to create such a robust neural
network.

2.3 Differential Characteristic

Differential cryptanalysis [1] is a representative cryptanalysis method of block ciphers. The
input difference (δ) is the XOR between the plaintext pairs (P0, P1), and the output difference
(∆) is the XOR between the ciphertext pairs. As in Equation 1, C0 and C1 are the results of
encrypting (E) P0 and P1 , respectively. The output difference (∆) can be obtained by XORing
C0 and C1. Here, a differential characteristic means a pair of input and output differences (δ,∆).
In the case of an ideal cipher, when plaintext with any input difference is encrypted, the output
difference should be uniform (like random). A weak cryptographic algorithm has a certain
output difference corresponding to an input difference. If the probability of satisfying an output
difference for an input difference is greater than the random probability, the ciphertext can be
distinguished from the random. These characteristics have remained even when encryption is
performed and can be inferred probabilistically.

P1 = P0 ⊕ δ,
C0 = E(P0), C1 = E(P1),
∆ = C0 ⊕ C1

(1)

2.4 Neural Network-based Distinguisher for Differential Cryptanaly-
sis

Deep learning is a good solution for distinguisher attacks, as it can probabilistically satisfy
specific output differences for given input differences. Consequently, the neural distinguisher
performs probabilistic prediction on data applied to distinguisher attacks using differential
characteristics. Most of the ongoing works of neural distinguishers are derived from [2], and
they focus on target ciphers and input differences. In [2], proposed at CRYPTO 2019, the
first neural distinguisher is proposed for round-reduced SPECK32/64. Their neural distinguisher
successfully distinguish cryptographic data from random data up to 7 rounds, and extended up
to 8 rounds through transfer learning. In [3], two distinguisher models considering multi-input
differential and single differential are presented. And the target ciphers are GIMLI, ASCON, KNOT,
and Chaskey. The proposed MLP-based neural distinguisher successfully distinguish 8-round
GIMLI, 3-round ASCON, 10/12-round KNOT (256/512-bit), and 4-round Chaskey. In addition,
many works [9, 8, 10, 11, 4] on various cryptographic and differential characteristics are being
conducted, focusing on SPECK.

3 Neural distinguisher for FF3

In this paper, we present a neural distinguisher specifically designed for the FPE scheme for
the first time.

3.1 Dataset

Figure 1 shows the process of generating the dataset using a single input difference. First,
random plaintexts (P0 and P1) are generated. Since we have to create a plaintext pair that
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satisfies the input difference, P0 is XORed with δ (input difference) to obtain plaintext P2.
Then, the ciphertexts C0, C1 and C2 are calculated by encrypting the plaintexts P0, P1, and
P2. Here, C0 and C1 are ciphertexts obtained by encrypting random plaintexts that do not
satisfy a differential characteristic. We assign the label 0 to the result of concatenating the two
values (C0||C1) indicating random data. On the other hand, C0 and C2 represent ciphertexts
for plaintext that satisfy δ (input difference). Thus, since the concatenated value (C0||CC2)
corresponds to cipher data that satisfies ∆ (output difference) with a certain probability, we
assign the label 1 indicating cipher. Plaintext and ciphertext used in the encryption process are
selected from the number domain (0 to 9) or lowercase letters domain (a to z). In addition, the
dataset is consist of bits of ciphertext pairs (C0||C1 or C0||C2) . Finally, due to the characteristic
of FPE, we use the input difference 0x0||K (K is a hexadecimal number ranging from 0x0 to
0xF). According to Equation (3) in [16], when 0x0||K is used, the probability of differential
is higher. So an experiment is conducted on the input differences presented in [16] (0x0||K).
In addition, since these input differences are independent of the round function (encryption
function), they can be used in all implementations of.

Figure 1: Dataset with one input difference.

3.2 Architecture and Training

Figure 2 shows the diagram of using one input difference. receives a ciphertext pair (random
or differential) and classifies it into random and cipher data. First, each bit of the ciphertext
pair in the dataset is assigned to each neuron of the input layer. Then, the output of the input
layer passes through the hidden layer. In the output layer, a final value between 0 and 1 is
calculated by applying a sigmoid activation function. Next, the loss of the final value and the
actual value (0 or 1) is calculated. If training to distinguish input data is performed correctly,
our model can work as a neural distinguisher for. To work as a valid distinguisher, it must
achieve an accuracy greater than 0.5, which is a random probability.

Table 1 shows the hyperparameter of . Epoch is set to 15, and a dense layer with all nodes
fully connected is used. performs binary classification because it needs to distinguish between
differential data and random data. Thus, binary cross-entropy is used as the loss function.
Plus, the Adam optimization function, known for its excellent performance, is employed in
our model. For more sophisticated learning, the learning rate of the optimization function is
adjusted during training (the learning rate starts at 0.001 and decreases to 0.0001).
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Figure 2: System diagram of .

Table 1: Hyperparameters of .

Hyperparameters Descriptions

Epochs 15
Loss function binary cross-entropy
Optimizer Adam(0.001 to 0.0001) (Learning rate decay)

Activation function ReLu (Hidden), Sigmoid (Output)
Batch size 32

Hidden layers 4 hidden layers with 128 units
Parameters 74,497

4 Evaluation

4.1 Experiment Environment

This experiment is performed on Google Colab, a cloud computing platform supporting Ubuntu
20.04.5 LTS and Tesla T4 (GPU) 12GB RAM. As the programming environment, TensorFlow
2.12.0 and Python 3.9.16 are used.

4.2 Result for One Input Difference

Table 2 shows the result of according to input difference. In the number domain, when 08 is
used as the input difference, can distinguish data up to 8 rounds, and a high accuracy of 0.98
is achieved. However, when using other input differences, relatively low accuracy is achieved
compared to 08. In the lowercase domain, can distinguish data up to 2 rounds due to the
increased number of cases for plaintext and ciphertext. It achieves an accuracy of 0.554 for
08, which is lower compared to the number domain. The experiment on 01 shows a 0.01 lower
accuracy compared to the 08 case. The reason for this result is that, as mentioned in [16], it
has differential characteristics expected when 08 is used as an input difference. Through this
experiment, it is confirmed that data with output differences for 0x0||K input differences can
be predicted with high probability.
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Table 2: Result of according to input difference.

Number (8-round) Lowercase (2-round)
Training Validation Test Reliability Training Validation Test Reliability

01 0.629 0.624 0.623 0.123 0.545 0.544 0.543 0.043
02 0.829 0.825 0.825 0.325 0.552 0.548 0.545 0.045
03 0.783 0.769 0.771 0.271 0.52 0.514 0.513 0.013
04 0.761 0.756 0.757 0.257 0.523 0.52 0.517 0.017
05 0.773 0.752 0.747 0.247 0.539 0.538 0.537 0.037
06 0.758 0.748 0.75 0.25 0.523 0.519 0.523 0.023
07 0.756 0.739 0.74 0.24 0.532 0.529 0.529 0.029

orange!1508 orange!150.987 orange!150.976 orange!150.977 orange!150.477 green!150.556 green!150.554 green!150.554 green!150.054
09 0.962 0.942 0.941 0.441 0.547 0.543 0.549 0.049
0A 0.969 0.953 0.951 0.451 0.538 0.534 0.532 0.032
0B 0.97 0.965 0.966 0.466 0.53 0.526 0.522 0.022
0C 0.97 0.959 0.959 0.459 0.538 0.536 0.539 0.039
0D 0.968 0.965 0.966 0.466 0.532 0.524 0.518 0.018
0E 0.964 0.963 0.963 0.463 0.549 0.549 0.551 0.051
0F 0.965 0.939 0.941 0.441 0.528 0.524 0.524 0.024

In a work [16] of the classical distinguisher for, the authors use SKINNY as an internal
encryption function. On the other hand, the we used is the default implementation using
AES. The distinguisher attack using the input differences 0x0||K succeeds despite the internal
encryption function being changed. In addition, in our results, it can be also confirmed that
the accuracy for 08 is higher and the accuracy for 01 is lower, relatively. This result seems to
have come from the fact that the differential characteristic of FPE is independent of the inner
encryption function. Thus, we believe that our neural distinguisher structure and differential
characteristics may be applicable to other variants as well (naturally, training needs to be
performed again according to the data).

5 Conclusion

In this work, we propose the first neural distinguisher for. In the , when 08 is used, a high
accuracy of 0.98 is achieved for 8 rounds. In the lowercase domain, up to 2 rounds can be
distinguished. Through our experiments, we confirme that the accuracy of 08 is higher, and
the accuracy of 01 is low, relatively. In our implementation, a different internal encryption
function is used than existing implementations, but the differential characteristic and probabil-
ities appear to be maintained. That is, the input difference 0x0||K remains independent of the
inner encryption function. Thus, it seems that our distinguisher may be utilized for variants
of. In future work, we will train our wider domains (e.g., uppercase letter, combination of each
domain). Also, we plan to optimize the neural distinguisher to achieve high reliability.
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