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Abstract

Mobile communications are envisioned to be implemented in a large catalog of different
applications: from traditional end-user services such as video streaming, to emerging digi-
talization solutions such as precision agriculture. Typically, mobile devices are considered
powerful enough to execute all the modules and services required to support secure and
broadband communications, but future scenarios require embedded devices as the primary
hardware component. And those embedded devices are resource-constrained. Their lim-
ited computing power can only manage minimal communication services, excluding other
additional functionalities as heavy security mechanisms. Lightweight security and encryp-
tion are the most adopted approaches to mitigate this problem, including stream cipher
and chaotic cryptosystems. This is because those techniques are based on hardware ele-
ments and do not consume computational resources. But while software implementations
are fully replicable with no error, hardware components may change their properties and
behavior depending on the manufacturing techniques and design. For standard digital
circuits, these small variations are not relevant, but chaotic cryptosystems are extremely
sensitive, and the transmitter and the receptor are expected to be totally identical. How-
ever, this scenario prevents technological development, as all mobile embedded devices
should be manufactured by the same industry agent to ensure interoperability. In this pa-
per, we address this challenge and propose a universal receptor for chaotic cryptosystems
in embedded mobile devices. The described receptor will be able to operate with trans-
mitters based on any existing implementation of the Chua’s circuit. Using a combination
of entropy metrics and binary distances, the receptor is able to identify the circuit im-
plementation in the transmitter and dynamically adapt the receptor to this configuration.
Simulation tools are used to validate the proposed technology, and the results show that
interoperability errors are reduced by more than 63%.

Keywords: chaotic cryptosystems, Chua’s circuit, information theory, embedded devices,
mobile security, simulation tools

1 Introduction

Next-generation mobile technologies (including 5G communications in the Ka-band [1] and 6G
networks [2] are expected to provide high performance communication services to a large cat-
alog of different applications. Each of these scenarios has very different characteristics and
requirements, creating 5G network slices [3] or 6G verticals [4]. However, provided Quality-
of-Service (QoS) must be intense regardless of the final application under consideration, and
Ultrareliable Low Latency Communications (URLLC) [5], massive Machine-Type Communica-
tions (mMTC) [6], and enhanced Mobile Broadband Communications (eMBBC) [7] must always
be guaranteed.
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These hard QoS requirements require complex network architectures and great computing
capabilities to be feasible. Both base stations and mobile devices must execute several different
modules, services, and protocols to support a smooth communication flow [8]. But in addition,
they must run other complementary and essential services such as security mechanisms or tarif-
fication controls [9]. In standard mobile devices, computing resources are considered redundant
enough to support all these algorithms and solutions. Nevertheless, this kind of device is not
universal. While in end-user services such as video streaming or phone calls, traditional mobile
devices are the dominant user equipment, in order to develop emerging applications other types
of devices are preferred [10]. For example, in sensorization scenarios, industry digitalization
solutions (Industry 4.0 [11] and Industry 5.0 [12]) or precision agriculture, mobile embedded
devices that enable a pervasive computing deployment are the most feasible technology [13].
However, these mobile embedded devices tend to be resource-constrained. The lack of power
supply and their reduced size imply a very limited computational power in terms of memory
and/or MIPS (Million instructions per second) [14].

In these embedded mobile devices, the minimal software needed to enable efficient mobile
communication is hardly implemented, and other supplementary services such as heavy security
policies (certificates, asymmetric encryption, etc.) cannot be implemented in a generic case [15].
However, this proposal opens several risks, especially in a global context where cyber-physical
attacks are rapidly developing and increasing in number every day [16]. As a way to mitigate
these risks and partially solve the problem, lightweight security and, mostly, encryption tech-
niques are proposed and implemented [17]. Among all possible approaches, stream cipher [18]
and chaotic cryptosystems [19] are preferred, as they can be based on hardware components
and circuits that do not require additional consumption of computational resources. However,
this hardware-based approach also faces some open questions. While in software algorithms and
schemes, replicability is fully ensured (even if devices can execute the same assembler language
the binary code can be exactly identical), in hardware technologies the situation is more diffi-
cult. Hardware devices that meet the same specifications can be implemented using different
physical or circuit designs or technologies. Therefore, finally, the real behavior may be slightly
different depending on the manufacturer.

Usually, these differences are not relevant for digital circuits as the one employed to create
stream ciphers, but chaotic cryptosystems are totally the opposite. In fact, the strength of
chaos-based security systems is the sensitivity of these elements to any variation [20]. So, the
final encryption signal or key stream is totally different if a small change is applied to the initial
conditions. But most chaotic circuits have several different implementations, so in any real
functional application or system or transmitters and receptors need to be implemented using
the same strategy and then the manufacturing company if the interoperability wants to be
guaranteed. Although this is possible, it is also a barrier for technological development, as it
causes high prices and low incentives for innovation. This paper addresses this challenge.

In this paper, we propose a new universal receptor for chaotic cryptosystems in mobile
embedded devices. This innovative receptor employs information theory and vector spaces to
determine which circuit implementation is available in the transmitted and dynamically adapts
to it. This detection algorithm is based on the Shannon entropy definition and the Hamming
distance to analyze and calculate the most probable circuit implementation in the transmitter
using the standard Euclidean distance. The proposed receptor is specifically designed to sup-
port any cryptosystem based on chaos synchronization and the Chua’s circuit. Any hardware
implementation of this chaotic circuit is supported: the standard circuit, the cubic nonlinearity,
the immittance-converter design and the cellular neural network (CNN) cells.

The remainder of the paper is organized as follows. Section 2 describes the state of the

2



Universal receptor for chaotic cryptosystems

based on Chua’s circuit in embedded mobile devices Bordel and Alcarria

art on chaotic cryptosystems for mobile embedded devices. Section 3 describes the proposed
receptor, including all the supported circuit implementations and the description of the cryp-
tosystems. Section 4 presents the experimental methodology and simulation scenario validating
the performance of the proposed solution, and the results and discussions. Finally, Section 5
concludes the paper.

2 State of the art

Traditionally, works on cryptosystems were focused on reducing the encryption errors and in-
creasing the randomness [21]. Because of the erratic behavior of chaotic systems, the ability of
dynamics to generate stable electrical or numerical signals is desired. Authors have proposed
solutions based on discrete iterated maps [22], jerk dynamics [23], analog circuits [24], or con-
tinuous differential systems [25], among other approaches. But, in general, all of these schemes
are not specifically designed for embedded devices or mobile devices. And all results provided
are theoretical or numerical. Problems associated with the real circuit implementation of those
solutions are not addressed.

On the other hand, some authors do address real implementation problems, but in most
cases, these works are restricted to software implementations. Challenges associated with the
limited entropy of chaos (increased through DNA-based encryption) [26], problems related
to weaknesses against statistical attacks (diffusion algorithms mitigate the situation) [27], or
errors induced by the limited numerical precision in microprocessors (addressed using correction
techniques) [28] are studied.

Hardware implementations of chaotic cryptosystems are also investigated. Different tech-
niques are reported to implement chaotic dynamics with a well-known good cryptographic
behavior (such as Lorenz dynamics) are reported [29]. Some authors investigate how to reduce
the size and consumption of these implementations [30], while others propose alternatives to
allow for the mass production of circuits using transistors and silicon-based components [24].
In recent years, several researchers have proposed solutions to implement chaotic cryptosystems
using digital Boolean circuits and components, such as FPGAs [31] or very large-scale integra-
tion (VLSI) circuits [32]. However, all of these works are related to the electronic optimization
of chaotic circuits, instead of their cryptographic applications and interoperability.

Moreover, nowadays, the most common approach consists of a standard lightweight cipher,
which is fed by a pseudorandom chaotic key [33]. Digital circuits in FPGAs where native chaotic
dynamics is employed [34] can be found. Even some proposals describe specific modifications
or adaptations of well-known dynamics (such as the Lorenz system) to make them compatible
with FPGAs [35] or standard electronic implementations [36]. Ad hoc chaos key generators
have also been proposed employing FPGAs [37] or microcontrollers [38]. Other hybrid schemes
where chaotic circuits are employed together with S-box functions [39], sine chaotization [40],
or wavelet fusion may also be found [41]. Other cryptographic solutions, such as hash func-
tions [42], have also been implemented using hardware-enabled chaos. But again, in all those
works, the focus is on the electronic optimization and adaptation of chaotic dynamics. No
reference to the cryptographic implications of all these challenges is made to registers. This
paper aims to fill this gap.

Finally, works where chaotic cryptosystems are specifically designed and tested for mobile
embedded devices are sparse. But some system-on-chip implementations of chaotic cryptosys-
tems have been described [31], as well as ciphers for wireless devices operating in real time [43].
Although most of the usual works are, again, software-based [44] and application-specific [45].
To overcome the limitations of resource-constrained devices, the proposed solutions are typi-
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cally limited to multiprocessor devices [46] or other similar enhanced hardware components.
Nevertheless, neither interoperability problems nor challenges are addressed.

3 Universal receptor for chaotic cryptosystems

All chaotic cryptosystems are based on the need for two identical dynamics to be reconstructed
in both the receptor and the transmitter [47]. Thus, a real fully universal receptor for chaotic
cryptosystems is impossible to implement because building that receptor is one of the most
critical weaknesses of chaos. But if one specific dynamic is chosen, it is theoretically possible to
build a universal receptor which can operate with any possible implementation of that dynamic.

In this first paper, we focus on a universal receptor for cryptosystems based on the Chua
circuit [48]. Chua’s circuit is one of the simplest physical systems generating chaos. Besides,
because it is a real circuit, no transformation or adaptation from the mathematical model to a
real circuit implementation is required. Because of these advantages, Chua’s circuit has been
extensively studied and used to build a cryptosystem for embedded (mobile) devices.

Section 3.1 describes the Chua’s circuit and all the possible implementations considered in
this work. Section 3.2 presents the model for the proposed cryptosystem based on chaos syn-
chronization and the Chua’s circuit, and Section 3.3 introduces the architecture and operation
of the proposed universal receptor for the previously mentioned cryptosystem.

3.1 Chua’s circuit. Considered implementations

Although the Chua’s circuit was first introduced by Leon Chua in 1983 [48], it became really
popular twenty years later; when its real applications began to be discovered and described [49].
Then, different authors investigated how to exploit the properties of this new circuit, introducing
up to ten different electronic implementations to achieve the same chaotic behavior [50]. But
with small variations, which were appropriate for different use cases.

In its original and standard implementation, the Chua’s circuit (Figure 1) is a simple passive
circuit with three reactances (two capacitors and one inductance) producing a three-dimensional
dynamic (1). Besides, one non-linear element whose implementation is not defined is included
too (2). Being Ga, Gb < 0, E > 0, |Gb| < |Ga| and variables V1, V2 and I3 electrical signals
at different circuit points (see Figure 1). This non-linear resistance is essential, and in its
most classical implementation it consists of operational amplifiers and passive components (see
Figure 2).

dV1

dt
=

1

C1
(
1

R
(V2 − V1)− f(V1))

dV2

dt
=

1

C2
(I3 +

1

R
(V1 − V2))

dI3
dt

= − 1

L
V2

(1)

f(V1) = Gb · V1 +
1

2
(Ga −Gb)(|V1 + E| − |V1 − E|) (2)

However, this approach has two main problems. On the one hand, capacitors, but mostly in-
stances, are difficult to manufacture and tend to giant in comparison to resistances or amplifiers.
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Figure 1: Standard Chua’s circuit implementation

Figure 2: Non-linearity implementation in standard Chua’s circuit

On the other hand, the non-linear resistance, implemented with amplifiers, is an active com-
ponent with a very sensitive behavior. And it usually causes stability problems and electrical
interferences.

Therefore, different authors proposed different approaches to address these challenges.

The oldest proposal consists of replacing the non-linear resistance by a cubic non-
linearity [51] (3), where Vmax is a positive parameter. As cubic functions are continuous (the
original non-linear resistance is piecewise (4) and then, non-continuous) some electronic com-
ponents (such as the triode) could produce the non-linearity with stability and no electrical
problems. But (see Figure 3) the cubic non-linearity is not fully identical to the original piece-
wise function, and some small differences in the generated chaos appear (especially in the most
complex structures).

f(V1) = − Ga

V 2
max

V1
3 +GaV1 (3)

f(V1) =


GaV1 if |V1| < E

Gb · V1 + (Ga −Gb)E if V1 > E

Gb · V1 − (Ga −Gb)E if V1 < −E

(4)

The two remaining implementations are based on circuit transformations using operational
amplifiers. The first proposal consists of removing the inductance, whose manufacturing is ex-
tremely complicated, by employing a capacitor and an immittance converter. Figure 4 shows
the proposed circuit. This converter transforms the capacitor into an equivalent inductance
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Figure 3: Non-linearity implementation in standard Chua’s circuit compared to the cubic non-
linearity

Figure 4: Immittance converter for the Chua’s circuit

LN (5), but also introduces spurious effects, as operational amplifiers can saturate while pas-
sive inductance not. Thus, circuits employing this implementation show perturbations at the
extreme points of all structures.

LN =
R3R5R1C4

R2
(5)

Finally, some authors argue that the behavior of the Chua’s circuit cannot depend on pas-
sive components, whose manufacturing errors are above 5% in most common components. On
the contrary, a Chua’s circuit only based on operational amplifiers may benefit from the stable
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Figure 5: Circuit implementation of a cellular neural network

behavior of feedback control loops. But, as in all feedback loops, this kind of Chua’s circuit can
only operate correctly within the operating range of operational amplifiers. Distortion tends
to appear in the extremes of any chaotic structure and saturation could eventually occur (with
fatal consequences for the communication systems). The most usual Chua’s circuit implemen-
tation using operation amplifiers is based on cellular neural network (CNN) cells. A CNN is
a circuit unit (see Figure 5) whose behavior is similar to a differential equation (6). Combin-
ing three of these CNN, as well as other required interconnection elements, we can achieve an
implementation of the Chua’s circuit only based on operational amplifiers (see Figure 6).

d

dt
v0 =

−1

C4R4
(v0 +R3(

v2
R2

+
v1
R1

)) (6)

In this work, the proposed universal receptor can operate with any transmitter based on the
Chua’s circuit and using any of the previously described implementations.

3.2 Chaos synchronization and cryptosystem

Several different cryptosystems based on chaos have been reported (see Section 2). But in
this article, we are focusing on the most traditional and studied one: chaos synchronization
and masking. This technique is supported by the full synchronization of two identical chaotic
dynamics (Chua’s circuits in this case), where the information to be protected is added to
the chaotic signal, and then it is masked. The resulting signal is used to synchronize the
receptor and recover the original information signal. Figure 7 shows the proposed scheme for
this cryptosystem. Different mathematical descriptions and models of this cryptosystem have
been reported [52].

However, the key to this cryptosystem is the ability to achieve full synchronization, in the
term described by Pecora and Caroll [53]. To allow full synchronization between receptor and
transmitter, the masking signal must be injected into the receptor. But the chaotic dynamics
in the receptor must also be stable and converge to the state represented by the masking
signal. This is only feasible if the conditional Lyapunov exponents of the receptor are strictly
negative. Table 1 shows the value of these exponents in the proposed cryptosystem. As can be
seen, masking signal must be V1 in order to ensure that the cryptosystem operates as expected.
Figure 8 shows the evolution of the synchronization error in the cryptosystem when this scheme
is used, which tends to zero (as expected as well).

However, this good behavior is only achieved if the receptor and transmitter behavior is fully
identical. Any minimal change, including small variations caused by different implementations,
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Figure 6: Chua’s circuit implementation based on CNN

Figure 7: Architecture for the proposed chaotic cryptosystem (chaotic masking)
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Table 1: Conditional Lyapunov exponents
Masking signal Lyapunov exponents

V1
-0.4982
-0.5014

V2
-2.6316

0

I3
1.4713
-5.3246

Figure 8: Synchronization error in the proposed chaotic cryptosystem

prevents the system from synchronizing and operating. The proposed universal receptor solves
the problem.

3.3 Dynamic receptor adaptation

The architecture of the proposed universal receptor is shown in Figure 9. As can be seen, the
receptor must include an instance or implementation of all the possible circuit realizations to be
found in the transmitters. In this case: standard Chua circuit, cubic non-linearity, immittance
converter, and CNN. The masking signal is tentatively introduced in all possible receptors (or
circuit implementations), but a multiplexer chooses the most probable and better output after
a statistical analysis. The final output of the receptor is dynamically adapted to the circuit

9



Universal receptor for chaotic cryptosystems

based on Chua’s circuit in embedded mobile devices Bordel and Alcarria

Figure 9: Architecture for the universal receptor

implementation which is identified as the most probable to be implemented in the transmitter.

This dynamic adaptation is based on two different indicators: the Shannon’s entropy H and
the Hamming distance dH .

The Shannon’s entropy of the recovered information Mr (7) is calculated using the tradi-
tional model (8), where probabilities P (mi) are obtained through the Laplace definition (9).
Fully random sources (for which entropy is the unit) and information sources generating only
one symbol (for which entropy is zero) are not probable. So, the probability Pimp(H) of each
circuit implementation to be the one implemented by the transmitter according to the Sannon’s
entropy can be obtained using a polynomial function with root in zero and the unit (10). Being
λ a real parameter taking values in the range [1,4], and δ[·] the Kronecker delta function.

Mr = {mi i = 1, . . . , NMr} (7)

H(Mr) = −
∑

∀mi∈Mr

P (mi) · log2(P (mi)) (8)

P (mi) =

∑
∀mi∈Mr

∑
∀mk∈Mr

δ[mi −mk]

NMr

(9)

Pimp(H) = λ · (H −H2) (10)

On the other hand, the recovered information Mr should be composed by symbols sj (with
nj bits) belonging to the code Ctx (11) employed in the transmitter. Some errors may occur, but
(in general) the probability of a successful decryption decreases as the code in the receptor and
the code in the transmitter are “further”. This distance can be measured using the Hamming
definition dH (12). And the probability Pimp(dH) of each circuit implementation to be the one
implemented by the transmitter according to the Hamming distance can be obtained using the
usual mean calculation (13).

Ctx = {sj j = 1, . . . , NCtx} (11)

dH(sj , sz) =

nj∑
k=1

δ[sj(k)− sz(k)] (12)
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Pimp(dH) =
1

NCtx

∑
∀sj∈Mr

1

nj
· dH(sj , s

∗
z)

s∗z = minszdH(sj , sz)

(13)

The global probability Pimp of each circuit implementation to be the one implemented by the
transmitter is finally calculated as the weighted Euclidean distance (14). The implementation
of the real circuit used by the remote transmitter is the one with the highest probability.

Pimp =

√
1

2
([Pimp(dH)]2 + [Pimp(H)]2) (14)

4 Experimental validation: simulation results

In order to evaluate the proposed universal receptor, an experimental validation supported by
simulation tools and scenarios was designed, deployed, and carried out. All experiments were
supported by the MATLAB 2022a software suite, due to its proved numerical capabilities. All
simulations were performed using a Linux architecture (Ubuntu 22.04 LTS) with the following
hardware characteristics: Dell R540 Rack 2U, 96 GB RAM, two processors Intel Xeon Silver
4114 2.2G, HD 2TB SATA 7,2K rpm.

All four circuit implementations were modeled using the corresponding PSPice models, and
all electrical signals were obtained using a numerical algorithm such as Runge-Kutta (with order
four). The chaotic cryptosystem and its synchronization were also represented numerically. The
clear information to be encrypted and transmitted was a plain text sequence. The number of
characters correctly received by the receptor was monitored and measured as a dependent
variable. The successful transmission rate is finally calculated as the ratio between the number
of characters correctly decrypted and received and the total number of characters transmitted.

Two different scenarios were simulated, and their results were compared. In the first sce-
nario, different Chua’s circuit implementations were randomly associated in the transmitter and
the receptor. In the second scenario, all receptors implemented the proposed universal receptor
scheme.

Figure 10 shows the results obtained. As can be seen, when the implementations were
randomly associated, the success rate is around 53%. This is coherent with one combination
whose operation is smooth (when receptor and transmitter include the same circuit implemen-
tation), and some additional successful transmissions, received on a random basis. On the other
hand, with the proposed universal receptor, successfully received characters are around 90%.
This means an improvement greater than 63%. This allows us to conclude that the proposed
solutions enable and enhance the interoperability between different circuit implementations.

5 Conclusions and future works

Typically, mobile devices are considered powerful enough to execute all the modules and services
required to support secure and broadband communications, but future scenarios require embed-
ded devices as the primary hardware component. And those embedded devices are resource-
constrained. Their limited computing power can only manage minimal communication services,
excluding other additional functionalities such as heavy-security mechanisms. Lightweight secu-
rity and encryption are the most adopted approaches to mitigate this problem, including stream
cipher and chaotic cryptosystems. However, while software implementations are fully replicable
with no error, hardware components may change their properties and behavior depending on
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Figure 10: Experimental results

the manufacturing techniques and design. For standard digital circuits these small variations
are not relevant, but chaotic cryptosystems are extremely sensitive and the transmitter and the
receptor are expected to be totally identical.

In this paper, we address this challenge and propose a universal receptor for chaotic cryp-
tosystems in embedded mobile devices. The described receptor will be able to operate with
transmitters based on any of the existing implementation of the Chua’s circuit. Using a com-
bination of entropy metrics and binary distances, the receptor is able to identify the circuit
implementation in the transmitter and dynamically adapt the receptor to this configuration.

Simulations tools are employed to validate the proposed technology, and results show the
interoperability errors reduce more than 63%.

Future works will analyze the performance of the proposed technology in real scenarios and
deployment with hardware devices and embedded software and components.
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