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Abstract

Due to the rapid development of cloud computing, outsourcing computation has re-
ceived considerable attention in recent years. Particularly, many outsourcing computation
schemes have been proposed to dedicate the outsourcing polynomial computation due to
its use in numerous fields, such as data analysis and machine learning. However, none of
these schemes are practical enough because they either do not consider privacy or support
the public verifiably to ensure fairness. To solve these problems, this paper proposes a new
outsourced polynomial computation scheme combining paillier encryption and blockchain
technology. Our scheme not only ensures the privacy of user data but also supports public
verification, ensuring fairness between users and cloud servers. To achieve public verifi-
ably, we apply the SGX technique, which is efficient in our proposal. Additionally, we
implemented a prototype of our proposal and ran it on an Ethereum test net. Extensive
experimental results show that our proposal is effective in terms of gas cost in Ethereum.

Keywords: Outsourcing Computation, Blockchain, Polynomial Computation.

1 Introduction

Cloud computing provides a cost-effective, flexible, and on-demand avenue for accessing its
centralized pool of computational resources. One of its most compelling advantages lies in the
outsourcing computing paradigm, enabling resource-constrained clients, utilizing lightweight
devices such as smartphones and laptops, to offload extensive computation tasks to the robust
cloud infrastructure on a pay-per-use basis. Consequently, both enterprises and individuals
can sidestep substantial investments in hardware and software deployment and maintenance.
Despite these considerable benefits, the realization of outsourcing computing falls short of ex-
pectations due to notable security challenges. A primary obstacle to this technological transfor-
mation is Integrity, wherein the data owner relinquishes direct control over computation tasks
once outsourced to the cloud. In the absence of supervision, the cloud may potentially provide
falsified results to conserve computational resources or reduce response time. This also directly
ties into the broader landscape of mobile internet security, as data integrity is a fundamental
concern in the secure operation of mobile devices connected to the internet.

To address this challenge, Gennaro et al. [1] introduced the concept of Verifiable Outsourcing
Computation (VC) to ensure the robust correctness of results. The key to VC is that the
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client’s computational cost of verification should be markedly lower than that of local execution.
Otherwise, the client would logically opt for in-house computation. After this seminal proposal,
numerous VC schemes [2, 3, 4] have been advanced. Based on function types, VC can be
broadly categorized into general and specific classes. While theoretically applicable to any
function, the former often entails intricate processes such as zero-knowledge proofs and fully
homomorphic encryption, rendering it principally of theoretical significance. Conversely, the
latter is designed for specific function classes and exhibited significantly enhanced efficiency in
practical applications.

This paper predominantly centers on a specific Verifiable Computation (VC) scheme, specifi-
cally for polynomial evaluation. Polynomial evaluation, a foundational mathematical operation,
finds widespread application in real-world scenarios such as data analysis and machine learning.
It is noteworthy as a crucial step towards achieving efficient general VC, wherein all computa-
tions can be encoded into arithmetic circuits and subsequently transformed into polynomials.
The significance of polynomial evaluation is underscored by the multitude of VC schemes pro-
posed over the past decades. However, the majority of existing schemes primarily emphasize
ensuring that the client obtains a valid result before payment, often neglecting the interests
of the cloud service provider. In such instances, the client may attempt to acquire the result
without payment by intentionally disputing the correctness of the cloud’s computation result,
even if the computation was performed honestly. Conversely, the cloud might intentionally pro-
vide inaccurate results, opting for suboptimal use of resources and time to maximize economic
gains. In cases of disputes, resolution involves the introduction of a fully trusted third party
(TTP), acting as an adjudicator. This ex-post measure resolves disputes, but the process is not
immediate, and real-world scenarios often lack a reliable TTP. To address this challenge, Guan
et al. [5], leveraging blockchain technology, proposed the first and only fair outsourcing poly-
nomial computation (FOPC) without a TTP. They employed Horner’s method and blockchain
to eliminate the need for a TTP. Despite being state-of-the-art, this approach introduces new
security challenges, as outlined below.

1. Privacy: This scheme directly outsources the polynomial f(x) to the malicious cloud in a
plaintext manner. The data owner does not wish to expose the privacy of the outsourced
function f(z), input and output against the cloud since the they may contain sensitive
information. A naive solution to achieve privacy is to additionally envelop it under a
fully homomorphic encryption (FHE) scheme, as mentioned in [5]. However, privacy-
preserving verifiable outsourcing computation for polynomials so obtained is inefficient
in practice since it requires the resource-limited client to perform heavy FHE operations,
which is far less efficient than regular encryption. Meanwhile, it also requires the cloud to
execute expensive computation over encrypted data. Therefore, there is a pressing need
for privacy-preserving VC schemes for polynomials without FHE.

2. False positive rate: This scheme employs Horner’s method and blockchain to assure the
correctness of the computation result returned by the cloud. However, the false positive
rate (FPR) ! increases linearly to the number of r;’s to be sampled, where r; = a,,_;_1 +
2 X 1rj_1 is the 4-th linear function in Horner’s method?. Therefore, the checkability rate
can not reach up to 100%. For example, suppose the intermediate results r1, r2, and 73
are forged while the consecutive results r4, r5, and rg are computed correctly based on
these wrong results. Sampling 5 and rg, it will pass the verification algorithm executed
by smart contracts. The smart contract will automatically transfer the funds to the cloud.

IThe probability of verification failure
2a,_;_1 is the n — i — 1-th coefficient of the outsourced polynomial f(x)
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In this case, the client still has to pay despite getting the wrong result. Therefore, there
is a pressing need for VC schemes for polynomials without any FPR.

To resolve the problems mentioned above, we propose a novel blockchain-based privacy-
preserving fair outsourcing polynomial computation (PFOC) scheme without FHE and FPR.
Without FHE, it not only preserves the privacy of the function of the data owner but also
protects the confidentiality of inputs/outputs of the client. Unlike FOPC, our proposed scheme
PFOC can achieve absolute fairness due to no FPR.

1.1 Our Results and Contributions

Our results and contributions can be summarized as follows.

1. We protect the privacy of the polynomial using the Paillier encryption. Due to its homo-
morphism, the cloud server can perform computations while learning nothing about the
polynomial. To hide the input without using expensive FHE, the true input is blinded
with a random number. In the end, the client can recover the true result and the cloud
can not get any information about the input and output.

2. To achieve no FPR, we propose a deterministic verifiable mechanism. To achieve public
verifiability, we employ SGX to store the verification key in the SGX enclave of miners.
As a result, any miner can run the smart contract to check the correctness of the result.

3. We implement a prototype of our proposed scheme and give a comprehensive comparison.
The experimental results show that our protocol is more practical.

1.2 Related Work

Verifiable outsourcing computation (VC) is a significant paradigm that allows a computa-
tionally weak client to securely delegate some complex computations to a powerful but untrusted
cloud. In this setting, the client can check the correctness of the outsourced computation with
little cost. This primitive was originally introduced by Gennaro et al. [1]. Following this
pioneering work, plenty of VC schemes have been proposed. According to the employed veri-
fication mechanism, VC can be classified into two-fold: publicly VC (PVC) and privately VC.
The former does not involve the data owner’s secret key during the verification phase, allowing
anyone including the data owner to check whether the cloud returns a valid result. In contrast,
the latter restricts result integrity verification to the data owner who possesses the secret key.
Therefore, the latter is a two-party protocol that includes the data owner and the cloud. In
general, privately VC is significantly more efficient than PVC. However, privately VC poses
challenges for the cloud, as the client may attempt to get the result without any payment by
deliberately accusing their misbehavior, even if the cloud conducts the computation honestly.
In such disputes, data owners are understandably hesitant to disclose their secret keys to sub-
stantiate their claims. To this end, the concept of publicly VC was first proposed by Parno
et al. in 2012 [6]. In the following, we will mainly focus on publicly verifiable outsourcing
computation.

Polynomial computation is a fundamental mathematical operation, which is widely used in
many applications. Due to its importance, numerous PVC schemes for polynomials have been
proposed in the past decades. Fiore et al. [7] gave a new outsourcing polynomial computation
scheme based on the bilinear map, while the verification of the resulting scheme is not efficient
as expected. Later on, Catalano et. al. [8], Backes et al. [9], Fiore et al. [10], and Zhang
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et al. [11] present new schemes with more efficient verification by using different techniques,
such as homomorphic hash function and homomorphic message authentic codes. The existing
schemes [12, 13, 11] also allow public verification. [12] proposed the signatures of correct
computation model (SCC), the worker would produce a succinct signature to vouch for the
correctness of the result, and it could be verified efficiently.[13] proposed a publicly verifiable
computation of polynomial based on the concept of the Euclidean division. [11] employed a
linearly homomorphic private-key encryption scheme to achieve public verifiability. However,
none of them considered the privacy of the input or the function.

Verifiable outsourcing computation ensures the integrity of computation results, but achiev-
ing fairness in the interests of both users and cloud servers remains a challenge. When a
dispute arises between a user and a cloud server, a complex process involving a trusted third
party (TTP) will be required. Trusted third parties (TTP) are a common way of resolving
disputes over the correctness of computational results in cloud computing, but they have some
shortcomings. Because TTP requires verification and arbitration of transactions, it cannot re-
spond quickly to disputes. In addition, if a TTP fails, the entire system is affected and there is
a single point of failure problem. With the development of blockchain, it is possible to apply
blockchain to outsourced computing. Kumaresan et al. [14] proposed a model to motivate
correct computing in the Bitcoin network. In their system, the worker should pay a deposit
that would be lost if the result cannot pass the verification. Their scheme mainly focused on the
timely delivery of the results and the fairness of the payment. Campanelli et al. [15] realized
the zero-knowledge payment of services based on blockchain, but their scheme lacks design de-
tails, and its efficiency is not as good as expected. Based on game theory and smart contracts,
Dong et al. [16] proposed an efficient verifiable outsourcing computing solution. However, their
scheme only works when the workers do not collude with each other. This assumption is a
little bit strong in the blockchain system. For example, more than 15% of mining power may
come from the same mining pool in Bitcoin. In other words, there is more than 15% chance
that the two workers are from the same organization. Krol et al. [17] proposed an efficient
and secure blockchain-based outsourcing computation solution by using trusted hardware that
would increase the user’s cost. Lin et al. [18] studied how to use blockchain to secure outsourc-
ing bilinear pairings. Zhang et al. [19] employed a challenge-and-proof manner to build a fair
payment framework for outsourcing services, but it did not discuss the approach of constructing
correctness proof for specific computational tasks. Cui et al. [20] proposed an outsourced de-
cryption scheme for a functional encryption scheme, in which a decrypted result is first verified
by the user and further verified by miners if the user rejects the result. Guan et al. [5] proposed
a new scheme for outsourced polynomial computation based on blockchain technology [21] and
Horner’s law, and proved the fairness of the scheme through game theory analysis. However,
this state-of-the-art still suffers from some new security challenges, which will slow down or
impede its promotion and popularization. Firstly, it exposes privacy vulnerabilities by directly
outsourcing the polynomial f(z) to a malicious cloud in plaintext. Besides, all orignial inputs
and outputs without any protection will be exposed as well. The second one is the lower check-
ability rate due to the sampling technique, which is linear to the number of selected immediate
results. Therefore, there is a pressing need for a privacy-preserving VC polynomial scheme
without overwhelming checkability rate.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 reviews some knowledge that is
needed beforehand. Section 3 formally defines our proposed system model and its security.
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Section 4 provides a concrete construction. Section 5 provides a detailed theoretical analysis
and simulation. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 SGX

Intel software guard extensions (SGX)[22], as trusted hardware technologies developed by
Intel Corporation, have been integrated into Intel’s commodity CPUs and provide the possibil-
ity of large-scale usage. SGX offers a secure container by leveraging trusted hardware. Remote
clients can upload the code and data into the secure container, and the process can be proven
reliable. The secure container protects the confidentiality and integrity of data while the com-
putation is being performed on it. The code and data loaded in the secure container cannot be
tampered with by the outside world. At the same time, the built-in services (e.g., trusted ran-
dom number, trusted time, and trusted monotonic counter) also provide powerful assurance for
designing protocols[23]. Benefiting from the above characteristics, SGX technology can provide
powerful support to solve the dilemma in the blockchain. Thus, utilizing a powerful tool such
as SGX in the blockchain area has become a new research direction.

2.2 Paillier Cryptosystem

A Paillier scheme consists of the following algorithms:

(Paillier.PK, Paillier.SK) < Paillier.KeyGen(1%): The key generation algorithm takes as input
the security parameter x and outputs a key pair (Paillier.PK, Paillier.SK).

¢ < Paillier.Encpajiier.pk (m): The encryption algorithm takes as inputs the message m and
the public key Paillier.PK and outputs the ciphertext c.

m < Paillier.Decpaiier. sk (¢): The decryption algorithm takes as inputs the ciphertext ¢ and
the secret key Paillier.SK and outputs the message m.

The cryptosystem supports the following operations, which can be performed without knowl-
edge of the private key:

1. Given the encryption of mg and m1, ¢y and ¢1, we can efficiently compute the encryption
of a + b, denoted:
Paillier.EncPam;er_pK(mo + ml) =y ® cy,

2. Given a constant ¢ and the encryption of myg, ¢, we can efficiently compute the encryption
of emyg, denoted:
Paillier.Encpajiiier.pk (¢ - mo) = 5,

where ® is the operation over the ciphertext.

2.3 IPFS

Inter-Planetary File System (IPFS) is proposed by Benet [24] and developed by Protocol
Labs. It aims to provide users a resilient peer-to-peer file system for big file storage and sharing
similar to BitTorrent. Meanwhile, it additionally supports content-addressing and version-
controlling properties by using distributed hash tables and git, respectively. With the former
property, users can obtain and verify the data easily and quickly. The latter property enables
users to review the old version of the data.
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Combination of Blockchain and IPFS. As blockchain is originally designed to be a public
ledger to record transactions, most blockchain systems adopted many approaches to encourage
the transaction size to be small to ensure the network performance. Consequently, it is either
impossible or expensive to store big files directly in blockchain systems. Hence, as a distributed
file system, IPF'S has become a popular solution for data and resource storage in blockchain-
based distributed applications (DApps) [25, 26, 27]. Specifically, the DApp can store data into
IPFS and keep the corresponding addresses in the blockchain. Then, users can retrieve the
corresponding data or files from IPFS with the addresses obtained from the DApp. On the
other hand, when the DApp needs to read a block of data from IPFS, it can request through
Oracle services. In this paper, we consider a decentralized oracle service providing IPFS data
for smart contracts.

2.4 Polynomial Congruence Theorem

Theorem 1. Given f(z), where x € Z, If the value of the polynomial f (u) > 0,u € Z, then
the following equation always holds:

fu+r) modr=f(u)
where the integer r > f (u).

Due to the space limitation, we refer the interested reader to [4] for rigorous proof. This
theorem will be used to hide the true input = in our construction, since the dummy input x +r
and true input z are indistinguishable. In the end, the data owner can recover the final result
f(z) by making f(x + r) modular .

3 Privacy-preserving Fair Outsourcing Computation Based
on Blockchain

In this section, we formalize the definition of the privacy-preserving fair outsourced compu-
tation model based on blockchain and its security required in our scheme.

3.1 Model Definition

A privacy-preserving fair outsourced computation model based on blockchain comprises four
different entities which are illustrated in Fig. 1. We describe them as follows:

1. Data owner: an untrusted entity with limited computation capability, who is responsible
for delegating the computation task to the cloud. When he receives the final result related
to his input, he may refuse to pay by claiming that the answer is incorrect or not received.

2. Cloud: an untrusted entity with powerful computation resources, who is responsible for
conducting the computation task in a pay-per-use manner. He has the potential to get a
payment when he returns a wrong result.

3. Blockchain: a fully trusted entity, who is composed of many miners with SGX. The miners
execute the smart contract to verify the correctness of the result returned by the cloud.
If the verification passes, it forwards the reward to the cloud server. Otherwise, it returns
the deposit to the client.



Privacy-preserving Fair Outsourcing Polynomial Computation
without FHE and FPR Wang et al.

VN

3.Upload results and proofs ( EEE
T

| CloudServer /-
\_Se y

NN

8.Send results and 4Provide result
proofs address 2.Take the task

1.Upload 7" smart contracts
encoded function 1)
and input |

Loverity Y
: Y%

avVa
Blockchain

7.send verify
parameters

5.5end encoded

10.5end results
input

Figure 1: The Architecture of PFOC

4. TPFS: a fully trusted entity, who is responsible for recording the final result and witness
provided by the cloud.

In the end, the malicious cloud can get any information about the outsourced function f,
the input x, and output f(x). When a dispute occurs, it can be fairly addressed immediately.

Definition 1 (Privacy-preserving fair outsourcing computation based on blockchain). The
privacy-preserving fair outsourcing computation based on blockchain is comprised of the follow-
ing seven algorithms.

Setup (1)‘, F) — (PK,SK): The setup algorithm is run by the data owner. It takes as input
the security parameters X and a family of functions F' and outputs a key pair (PK, SK).

EncFunction(PK, SK, f) — oy: The function encoding algorithm is run by the data owner.
It takes as input the public key PK, the private key SK and the function f € F, and outputs
the encoded function oy.

Enclnput(PK, z) — o,: The input encoding algorithm is run by the data owner. It takes as
input the public key PK and the input x, and outputs the encoded input o,.

Compute(PK,0f,05) — (0y,m): The computation algorithm is run by the untrusted cloud.
It takes as input the public key PK, the encoded function oy and encoded input o, and outputs
the encoded output o, and witness .

ParamGen (PK,SK,0,,0,) — param: The verification parameter generation algorithm is
run by the miner’s SGX. It takes as input the public key PK, private key SK, encoded input
o, and encoded output oy, and outputs verification parameter param.

Verify (PK, 7,04, param) — {0 or 1}: The verification algorithm is run by the smart con-
tract on the blockchain. It takes as input the public key PK, witness oy, encoded output oy and
verification parameter param. It outputs 1 if verification is successful and 0 otherwise.

Recover (SK, PK,x,0,) — y: The recovery algorithm is run by the data owner. It takes
as input the public key PK , the private key SK, the true input x and encoded output oy, and
outputs the true result y = f(x).

3.2 Correctness and Security Definitions

Intuitively, a privacy-preserving fair outsourced computation based on blockchain scheme
is correct if whenever its algorithms are executed honestly, a valid result will never be rejected
and could be recovered. More formally:
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Definition 2 (Correctness). A privacy-preserving fair outsourcing computation based on
blockchain scheme is correct if the following holds:

Setup (1/\,F) — (PK, SK);
EncFunction(PK, SK, f) — oy;
Enclnput(PK, z) — oy;

Pr | Compute(PK,oy,0,) — (0y,m); >1—negl()\)
ParamGen (PK, SK,0,,0,) — param :
Verify (PK, 7, 0y, param) — 1A
Recover (SK, PK,z,0,) =y

Intuitively, a privacy-preserving fair outsourcing computation scheme based on blockchain
satisfies result unforgeability if whenever arbitrary adversary A cannot convince a verifier to
accept a wrong result with overwhelming probability. More formally:

Definition 3 (Result Unforgeability). Let [] be a privacy-preserving fair outsourced computa-
tion based on blockchain scheme, and let A be a PPT machine. We define result unforgeability
via the following experiment Exp\ [[, F, A.

EXpElU L F,A:
Setup (1, F) — (PK, SK);
EncFunction(PK, SK, f) — oy;
From i =1 to d:
A (PK,xl, Oys Sy Li1, azifl) — x;;
Enclnput (PK, x;) — 04;;
A(PK,04,8,04,) = 2%
Enclnput (PK, z*) — 04+;
A(PK,0f,04,,8,05,,0:+) = (0, T);
ParamGen (PK, SK, az*7a;) — param;
Verify (PK, , aé,param) — b;
Recover (SK, PK,x,az’/) — '
Ifb=1and y # f(z*):
output 1;
else
output 0;

For any A € N, we define the advantage of arbitrary A in the above experiment as

A’ (T FA) = Pr [BxpS ([T £ A = 1]

We say that PFOC achieves result unforgeability if AdvRY (TT,, \) < negl (A).

Intuitively, a privacy-preserving fair outsourcing computation based on blockchain scheme
satisfies input privacy if whenever arbitrary adversary A cannot distinguish a true input from
a dummy input.

Definition 4 (Input Privacy). Let [] be a privacy-preserving fair outsourced computation based

on blockchain scheme, and let A be a PPT machine. We define input privacy via the following
experiment EXp/PL{'VX I, F, A

8



Privacy-preserving Fair Outsourcing Polynomial Computation
without FHE and FPR Wang et al.

Exo™ ([, A
Setup (1/\7F) — (PK, SK);
A(PK) — X0, T1;
{0,13 5 b;
Enclnput (PK, xp) — 04, ;
A(PK,x,21,04,) — b
Ifb=b:

output 1;
else

output 0;

For any A € N, we define the advantage of arbitrary A in the above experiment as

AT ([ PN =

Pr {EXPE{WX[H, F ] = 1] — ;‘

We say that PFOC achieves input privacy if Advy™(T], F,\) < negl (N).

Due to the limitation of space, we omit the definition of output privacy since it is similar to
that of input privacy definition.

Intuitively, a privacy-preserving fair outsourcing computation scheme based on blockchain
satisfies function privacy if whenever arbitrary adversary A cannot distinguish between a true
function and a dummy function.

Definition 5 (Function Privacy). Let [] be a privacy-preserving fair outsourced computation
scheme based on blockchain, and let A be a PPT machine. We define function privacy via the
following experiment Expf:{"’f 0L F, Al

Expi{"’f I F, Al:
A(Fa /\) - f07f1a where |f0| = |f1|7
0,1} & b;
Setup (1)‘,fb) — (PKb,SKb);
EncFunction(PKy, SKy, fv) = 04,3
A(PKy, fo, f1,05,) = b
Ifb=b:

output 1;
else

output 0;

For any A € N, we define the advantage of arbitrary A in the above experiment as

AdoSM([LF N =

Pr {Expi{i"f[H,F, A = 1} - ;’

We say that PFOC achieves function privacy if Advi{i"f(H, £y A) < negl ().
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4 The Construction Of Privacy-preserving Fair Outsourc-
ing Polynomial Computation Based on Blockchain

4.1 Details of Our Construction

Setup (1)‘,F) — (PK,SK): Given a security parameter A and a family of polyno-
mial F, the data owner first uniformly choose d € [n], ¢,rg,71,72 € Zy. Next, it gen-
erates a key pair (Paillier.PK, Paillier.SK) by conducting Paillier.KeyGen algorithm. Finally,
it publishes the public key PK = {Paillier.PK, max = max(F)} and keeps the private key
SK = {Paillier.SK, d, ¢, ro, 71,72} secret.

EncFunction(PK, SK, f) — o4: The data owner first parses the public key PK and private
key SK as {Paillier.PK,max} and {Paillier.SK,¢,d,ro, 71,72}, respectively. Next, it generates
two polynomials r(x) and g(x) as follows:

r(z) = rox? +ry + rox (1)

g(@) = e f@) +r(@) = 3 bt @)
1=0

Then, the data owner executes Paillier.Enc algorithm to encrypt outsourcing polynomials f(x)
and gets the encrypted polynomial f/(z) as follows.

fm:ZW£ (3)

where a) = Paillier.Encpailiier.pk (a;). Similarly, it can get the encrypted polynomial ¢'(x) as
follows.

J'(x) =" v, (4)
i=0

where b} = Paillier.Encpaitier.pk (b;). Finally, it sets the encoded polynomial oy = {f'(z),¢'(z)}
and uploads oy to IPFS.

Enclnput(PK, z) — o,: The data owner first parses the public key PK as {Paillier.PK, max}.
Next, it uniformly chooses a random r > max and computes the encoded input

Op =X +T. (5)

Finally, it uploads o, to the IPFS.
Compute(PK,0¢,0,) — {0y, 7}: Upon receiving the encoded input o, the cloud generates
oy and 7 by computing

gZ] = f/(am) - H Paillier.EncPai”ier_PK(ai)ai (6)
1=0

™= gl(az) = H Pai”ier.EncPai”iervpK(bi)"; (7)
i=0

Finally, the cloud uploads the encoded result o, and witness 7 to IPFS.
ParamGen (PK, SK,0,,0,) — param: With the secure channel established by the successful
remote authentication of SGX, the client can send the private key SK to the miner’'s SGX

10
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securely. After receiving it, the enclave parses SK as {Paillier.SK,c,d,rg,r1,m2}. Next, it
generates the polynomial r(z) = 79x? + r; + 722 and computes R = r(o,). Then, it generates
R’ by computing

R/ = Paillier.EncPai”ie,.pK(R) = Paillier.EncPai”ie,,pK(T(JI)) (8)

Afterward, it computes

Y=oy, 9)

Finally, it sets verification parameter param = {Y’, R’} and submits param to the smart
contract.

Verify (PK, 7, 0,, param) — {0 or 1}: Upon receiving the encoded result o, and witness
param, the smart contract parses the verification parameter param as {Y’, R'}. Next, it checks
whether the following equation holds:

=Y R (10)

If not, it outputs 0 and aborts; Otherwise, it outputs 1 and accepts the encoded result o, .

Recover (SK, PK, z,0,) — y: The data owner first parses the private key SK and public
key PK as {Paillier.PK, maz} and {Paillier.SK,c,d, rg, 71,72}, respectively. Next, it recovers
encoded result y; by computing

Y1 = Paillier.DecPai”ier_SK(oy) = f(ZL' + 7’) (11)
Finally, it recovers the final result y by computing
y=vy1 = f(z+r) modr (12)

Remark 1. Full homomorphic encryption can also be used for the polynomial coefficients f and
the input x hidden, we call this scheme FHPC. The basic process is the same as our proposed
scheme. When the data owner performs the function encoding and input encoding algorithm, the
two polynomial coefficients, input and verification parameters are fully homomorphic encrypted.
When the client performs the result recovery algorithm, the result f(z) is obtained by decrypting
it using the fully homomorphic private key.

4.2 Correctness

According to Definition 2, to prove the correctness, we only need to argue that the valid
encoded result o, can pass Verify algorithm and can be decoded to the final result y = f(z) if
all the entities involved are honest.

For the first part, we will argue it mainly based on Equation 10. According to Equations 9
and 8, the right-hand side of Equation 10 can be expressed as below:

. Paillier.EncPamier_pK (R)

- Paillier.Encpaiiier.pk (7(03))

11
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According to Equation 6, the above equation can be re-written as follows:

n
Y’ . R/ = H Paillier.EncPai”ier‘pK(c . ai)U; . Paillier.EncPai”ier_pK (’I“ (O'l))
=0

n
= H Paillier.Encpaitier.pk (¢ - a; - o) - Paillier.Encpaitier.pk (7 (02))
=0

n
= Paillier.EncPa”“er_pK < E C-Qa; 0’;) . Paillier.EncPa;”ier_pK (7’ (Uz))
=0

= Paillier.Encpaiiiier.PK (C - f (Ua;) +r (Uw))
= Paillier.Encpaitiier.pk (9(02))

=T

Obviously, if all participants follow honestly all algorithms described above, the valid result o,
will never be rejected by verification algorithm Verify.

For the second part, we will argue that the encoded result o, can be recovered to the final
result y = f(x). According to Equation 11, the data owner can get y1 = f(0.) = f(z + r) by
conducting Paillier.Dec. According to Theorem 1, we can get f(z) = f(z+7) mod r. Therefore,
the Equation 12 holds.

From all the above, our proposed scheme achieves correctness.

5 Evaluation

In this section, we first theoretically compare our proposed scheme with Guan et al.’s scheme
[5] (we call it as FOPC), Ye et al.’s scheme [28] (we call it as VDPC), and privacy-preserving
PFOC using fully homomorphic encryption scheme (we call it as FHPC) in two folds: the
desired properties and the computation complexity. Then, we provide a prototypal implement
to compare their computation cost.

5.1 Properties

Table 1 summarizes the comparison of desired properties. Only VDPC requires a trusted
third party (TTP) to handle disputes between the data owner and the cloud, while other
schemes utilize smart contracts (deployed in the decentralized blockchain) to automatically
check the correctness of the computation result. The TTP can ensure that the dispute will be
finally addressed, but it can not make responses immediately like other schemes. Meanwhile,
TTP-based schemes also suffer from one single-point failure. FOPC focuses on how to efficiently
obtain the fairness of the outsourced polynomial computation without considering privacy, and
VDPC protects the privacy of the output. FHPC achieves privacy using FHE, so our proposed
scheme is more efficient than FHPC. Only VDPC involves the private key in the verification
phase, so VDPC is a privately verifiable outsourcing computation. As mentioned in section 1,
public verifiability is the precondition of fairness. In the simulation, we will omit VDPC due to
its private verifiability. Using the sampling technique, FPR both in FOPC and FHPC schemes
decreases linearly to the number of the chosen points. Hence, their FPR is higher than our
proposed scheme. FHPC has the same desired properties as ours, but their efficiency is lower
than ours. Overall, our proposed scheme is more practical.
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Table 1: Comparison of Desired Properties

Scheme Decentration Polynomialprlfr?;z T Output Public Verifiablity | FPR | Fairness
FOPCI5] v X X X v High High
VDPC|28] X X X v X Low Low
FHPC v v v v v High High
Our proposal v v v v v Low High

Table 2: Comparison of Computational Cost

Scheme Setup EncFunction Enclnput Compute ParamGen Verify Recover
FOPC[] N/A N/A N/A n Mul+1Mod N/A sMul N/A
VDPC[2g] 1 Mul (n+2) Mul+1 Exp N/A 2n Mul+2Mod 1 Exp+1 Mul+1 Mod 1Mul4-1Mod 1Mod
FHPC FH.Setup (n+1)FH.Enc 1FH.Enc | nFH.Mul+nFH.Add+1Mod N/A sFH.Mul 1FH.Dec
Our proposal | P.Setup | (n+2) Mul+1 Exp+2(n+3)P.Enc 1 Add 2n Mul+(4n-2) Exp+2 Mod | 2Exp+1Mul+1P.Enc+1Mod | 1Mul4+1Mod | 1P.Dec+2Mod

5.2 Computation Cost

Since the computation cost is mainly determined by the exponentiation, multiplication,
addition, modulo operation, Paillier and full homomorphism encryption algorithms, we evaluate
it by counting the number of these operations. Table 2 summarizes the comparison of the
computation costs of the schemes mentioned above. In Table 2, we denote the time cost of
exponentiation by Exp, the time cost of multiplication by Mul, the time cost of addition by
Add, the time cost of modulo operation by Mod, the time cost of key generation, encryption and
decryption algorithms of Pallier Cryptosystem by P.Setup, P.Enc, P.Dec respectively. Similarly,
the time cost of these three algorithms of fully homomorphic encryption by FH.Setup, FH.Enc,
and FH.Dec, respectively. We denote the number of selected intermediate results by s. In
Enclnput phase, our proposed scheme is much more efficient than FHPC since it only requires
one single addition operation rather than an encryption operation of FHE. In terms of time
cost of Compute, our proposed scheme is similar to FHPC. FOPC is the most efficient since the
cloud does not conduct additional computation to guarantee the integrity of the result. VDPC
has to conduct another polynomial with the same size as the outsourcing polynomial. For Verify
algorithm, the time cost of FOPC is linear to the number s of selected intermediate results,
while other schemes are all independent of s. In the Recover phase, our proposed scheme is
much more efficient than FHPC since the decryption algorithm of FHE is much more expensive
than that of Paillier.

5.3 Simulation

In this section, we provide a thorough experimental evaluation of our proposed scheme. To
precisely evaluate the computation cost at client, cloud server, miner and Ethereum, all simu-
lations were conducted on Ubuntu 23.03 virtual machine simulating an Intel(R) Core(TM) i7-
12700HQ CPU @ 2.10GHz processor and 8GB memory. Then, to evaluate the gas consumption
during the Verify phase, we tested the Solidity implementation on REMIX. The performance
of the proposed scheme was demonstrated for modulo lengths p = 64, 128,256,512, 1024 bits,
polynomial terms n = 100, 200, 300, 400, 500, 600 and a Paillier public key length of 1024 bits.

Figure 2a depicts the comparison of time cost in the Setup phase. VDPC is the most efficient
scheme, while FHPC costs the most expensive overhead. The computational cost of our scheme
PFOC is larger because of the extra time spent on Paillier.KeyGen. Figure 2b depicts the
comparison of time cost in the EncFunction phase. The time cost of all these schemes is
linearly related to the number of polynomial terms n. The computational cost of PFOC is
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Table 3: Comparison of Gas Cost

Scheme Degree | gas consumption | Amount($)

100 16,509,639 907.82

200 41,557,187 2 269.56

. 300 67,658,087 3685.77

Polynomial Compute 55 93,760,787 5 101.97

500 110,862,587 6 536.33

600 145,964,387 7 052.54

FOPC Verify 10 2610180 141.62
PFOC Verify 77888 1.25

larger. This is because the two polynomial coefficients have to be encrypted using Paillier.Enc
after encoding the polynomial to protect the client’s privacy. Figure 2¢ depicts the comparison
of time cost in the Compute phase. FOPC is the most efficient scheme, but it does not protect
the client privacy. In contrast, our scheme hides the client’s input, polynomial coefficients, and
output, while ensuring computational efficiency, although the cost is larger. Figure 2d depicts
the comparison of time cost in the GenWitness phase. VDPC is the most efficient scheme,
but it does not support public verification. Our scheme is not only minimally affected by p
and n, but also have a computational cost of less than 5ms. Figure 2e depicts the comparison
of the gas consumption of the Verify phase. Since FOPC and FHPC do not give a specific
selection of several intermediate results, so we choose 10 intermediate results for verification.
The results show that FHPC has the highest gas consumption. Gas consumption of our scheme
is almost independent of the size of p and n. Figure 2f depicts the comparison of time cost
in the Recover phase. The cost of our scheme is larger because the computation results have
to be decrypted using Paillier.Dec before the modulo operation to get the final result, but the
privacy protection and public verifiably of client are achieved. Figure 3 depicts the comparison
of the gas consumption between the polynomial computation directly by Ethereum and the
Verify phase of PFOC, as shown in the figure, the gas consumption of polynomial computation
directly by Ethereum is much larger than that of our Verify phase.

Table 3 shows the gas consumption and cost table of Ethereum’s direct polynomial com-
putation under the modulus length p = 1024 bits, the verification phase of FOPC and our
verification phase. It can be seen from the table and the above experiments that our gas con-
sumption and cost are the least, and Does not vary with the number of polynomial terms and
modulus length.

6 Conclusion

We propose a privacy-preserving fair outsourcing polynomial computation without FPR. To
avoid expensive FHE, we utilize the Paillier encryption and blind technique to ensure privacy.
We achieve public verifiably using SGX. Besides, our proposed scheme can guarantee fairness
with an overwhelming probability. The detailed performance analyses and simulations show
that our proposed schemes are more practical in the real world.
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