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Abstract 

IoT technology's rapid evolution and enhanced connectivity have enabled its widespread 

application from infrastructural settings to everyday households as smart homes. With 

the increasing prevalence of IoT devices, concerns about data protection have grown, 

leading to the adoption of security measures like encryption in common lightweight 

communication protocols. However, using these encryption techniques can hinder the 

identification of devices participating in communication and complicate network traffic 

analysis during intrusion investigations. In this study, therefore, we extracted features 

from encrypted traffic data and conducted IoT device fingerprinting through 

classification algorithms. Experimental results revealed that the Random Forest 

classification algorithm achieved a maximum classification accuracy of about 93.89%. 
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1 Introduction 

With the progression of the fourth industrial revolution, there is an increased interconnectivity 

among Internet of Things (IoT) devices. These devices now facilitate various services across various 

domains, enriching user experiences. For instance, industrial facilities, such as factories, are serviced 

with IoT under the moniker of Industrial Internet of Things (IIoT). Concurrently, IoT services catering 

to home automation are branded as Smart Home. 
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However, the soaring demand for IoT has sufficiently piqued the interest of cyber attackers. Since 

the advent of the Mirai botnet in 2016, targeting IoT services, there has been a consistent emergence of 

various malicious codes based on it. These codes often disrupt the regular functionalities of IoT- 

based services. Moreover, beyond these malicious codes, some incidents involve exploiting 

vulnerabilities in IoT devices leading to specific intrusions. 

Although cyberattacks targeting IoT services are on the rise, standardized procedures for IoT digital 

forensics remain absent. As a foundation for comprehensive digital forensics, professionals often resort 

to the NIST SP 800-86 document[1] to investigate intrusions concerning IoT. NIST SP 800-86 

delineates the initial phase of digital forensics as the identification of data sources followed by data 

collection. It underscores the necessity to assess, extract, and analyze traffic data related to network 

activities, ensuring an understanding of the implications on systems and networks. 

However, identifying IoT devices poses challenges due to various reasons. IoT devices exhibit 

heterogeneous characteristics depending on their intended usage – varying in form, structure, and the 

network protocols they employ. Such heterogeneity signifies the difficulty in applying a standardized 

method or framework for device identification. Additionally, the evolution of encryption algorithms to 

counter cyberattacks can further hinder device identification[2]. 

To facilitate efficient intrusion investigations, there is a need for methodologies capable of 

identifying IoT devices across arbitrary protocols without decrypting network packets. In this study, we 

employed machine learning-based classification algorithms to identify devices using encrypted network 

data and assessed the accuracy of identification.  

2 Related Works 

 
Figure 1: Classification of device Identification techniques 

To assess the extent of asset damage and analyze events due to security breaches, it's crucial to 

identify the devices involved in the breach. Device identification technology can be broadly categorized 

into two types as shown in Figure 1: non-machine learning-based device identification and machine 

learning-based device identification. Non-machine learning-based device identification primarily 

employs sophisticated rules and algorithms, like fingerprinting. Device identification via fingerprinting 
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typically adopts the most reliable result from a vast fingerprinting database filled with device 

information. 

Machine learning-based device identification extracts meaningful features from device behavior 

information, such as network traffic, and determines the type of device based on the most reliable result 

from a trained model. Machine learning-based device identification can be largely classified into 

supervised and unsupervised learning. Supervised learning for device identification characteristically 

provides high accuracy for well-known devices with substantial data. However, caution is needed when 

dealing with devices with insufficient data or unknown devices, as they might not be identified correctly. 

In the case of unsupervised learning for device identification, it can classify unknown devices. 

Nevertheless, as precise label data for collected data isn't provided, there's a possibility of inaccurate 

results, warranting caution. 

2.1 Device Identification Based on Non-Machine Learning 

To analyze the scale of asset damage and events due to security intrusions, it's essential to identify 

the devices involved in the intrusion. Noman Mazhar et al. have argued that the identification of IoT 

devices is mainly carried out through classification and device fingerprinting[3]. To effectively identify 

malicious IoT devices, it is crucial to utilize both methods concurrently. They categorized the 

fingerprinting technologies into four types as illustrated in Figure 1: physical fingerprinting, wireless 

fingerprinting, network traces-based fingerprinting, and behavioral fingerprinting. 

Physical Fingerprinting identifies a device based on its physical characteristics, rather than its 

logical features. It refers to the physical components of the device that can be treated as identifiers. 

Wireless Fingerprinting refers to the identification of devices through characteristics observed in 

wireless communication. For instance, the signal strength of Wi-Fi is often used to identify devices in 

this manner[4]. Network Traces-Based Fingerprinting identifies devices based on patterns in network 

activity. The primary goal is to understand a device's actions based on the metadata of network packets 

and to classify the device accordingly. Behavioral Fingerprinting identifies devices based on the unique 

behavioral patterns exhibited during network communication. 

Among these four device fingerprinting techniques, both Network Traces-Based Fingerprinting and 

Behavioral Fingerprinting can be categorized as methods based on network traffic for device 

identification. However, since the primary network activity of IoT devices is recommended to be 

encrypted, it is challenging to accurately discern the behavior of the device. ISO/IEC 27400, which 

defines security guidelines for IoT devices, emphasizes the necessity of encrypting transmitted 

information regarding network and communication technologies applied to IoT and systems[5]. 

Moreover, lightweight wireless communication protocols predominantly used by IoT devices provide 

encryption techniques suitable for each protocol and the nature of the corresponding device. This makes 

it easier for IoT service developers and providers to encrypt information. 

2.2 Device Identification Based on Machine Learning 

Table 1: Comparison of related study 

Reference 
Target Protocol 

Zigbee TCP/UDP Z-Wave BLE. 
[6] O    
[7] O O   
[8] O  O  
[9]    O 
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Table 1 summarizes a study conducted on device identification based on network behavior using 

supervised machine learning. Hossein Jafari et al.[6] conducted a study on the identification of Zigbee 

sensors using a sensor board that incorporated temperature, lighting, acceleration, magnetism, and voice 

sensors. By employing classification models such as DNN, CNN, and LSTM, they successfully 

classified the sensors with an accuracy of up to 96.3%. Ola Salman et al.[7] performed study in an 

experimental environment composed of sensors and actuators. They extracted header information from 

Zigbee and TCP/UDP communication packets to detect attacks and identify devices. Using the RF 

algorithm, they achieved a maximum accuracy of 97%. Leonardo Babun et al.[8] undertook a device 

identification experiment targeting IoT devices using Z-Wave and Zigbee protocols, demonstrating an 

identification accuracy of up to 93.25%. Jinghui Zhang et al.[9] explored a method for device 

identification by extracting features from the data link layer of BLE communication. The accuracy 

achieved in this study approached 99.8%. 

These studies primarily focused on extracting meaningful information from encrypted packets by 

emphasizing network packet headers and displayed commendable accuracy rates. However, most of 

these investigations face challenges in evolving into comprehensive classifier studies due to the limited 

number of target protocols or device types. Extracting meaningful information from the payload due to 

the encrypted communication of Internet of Things (IoT) devices is an intricate task. Given that the type 

of information embedded in packets can significantly vary depending on the communication protocol, 

constructing a device identification model that is independent of the protocol is no simple feat. Thus, 

this study built a classification model by extracting commonly utilized information, which aids in device 

identification, from the unencrypted header section.  

3 Proposal Model 

Figure 2 depicts the diagrammatic representation of the proposed approach in this study for device 

identification in IoT using machine learning based on encrypted packet data. Initially, the packet data 

from the network, which is intended for device identification, is gathered. Subsequently, features used 

for device identification are extracted from the collected network packet data header information. These 

extracted features are transformed into the Flow Object proposed in this study, possessing 16 features 

to be utilized in the device identification machine learning model. Finally, based on the features of each 

Flow Object, a machine learning model is developed to identify which device participated in that 

particular network communication. 
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Figure 2: Diagram for proposed device identification 

3.1 Collect Packet Data 

The method of collecting packet data participating in the network varies depending on which 

protocol the surrounding IoT devices communicate with. For instance, for the Zigbee protocol, data can 

be collected using the CC2531 module, while for the BLE protocol, packet sniffing can be conducted 

using the Ubertooth-one module. By following the collection procedure specific to each protocol, 

network packet data can ultimately be gathered and saved in either pcap or pcapng file extensions. 

3.2 Extract features 

From each collected packet, a total of 7 features are extracted: sender's identifier (s), receiver's 

identifier (d), additional information (a), protocol name (p, P), packet length (L), packet time interval 

(T), and packet transmission direction (D). Features abbreviated in lowercase are values used for 

clustering packets that constitute a communication session, while those abbreviated in uppercase are 

essential features used for device identification from the relationships of clustered packets. 
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Figure 3 illustrates the pseudocode for creating the flow object proposed in this study for device 

identification. This object was formulated by partially leveraging the contents proposed by Ola Salman 

et al[7]. A flow is an object comprised of key-value pairs where the key takes the form of a tuple. This 

tuple consists of the sender device's identifier, the receiver device's identifier, the type of protocol, and 

a field recording additional information. Such supplementary details refer to communication data 

beyond device identifiers like IP or Node ID. When identifiers are identical due to a specific field in the 

packet, additional procedures are required for processing. For tuples extracted from two different 

packets, they are considered identical under the following conditions:  

• Are the protocol details of the two packets the same? 

• the sender device identifiers and receiver device identifiers of the two packets either 

identical or in reverse order? 

The tuple to be used as the value for the flow is also extracted from the header information. Each 

tuple incorporates the packet timestamp's margin of error, the length of the packet, and details about the 

transmission direction. The transmission direction is determined based on the relationship of the sender 

and receiver stored in the key tuple and the relationship of the sender and receiver in the packet from 

which the value is being extracted. For instance, if the sender's identifier in the key tuple matches the 

sender's identifier in the packet, and the receiver's identifier in the key tuple corresponds to the receiver's 

identifier in the packet, then this value is set to 1. Conversely, if the sender's identifier in the key tuple 

matches the receiver's identifier in the packet, and the receiver's identifier in the key tuple matches the 

sender's identifier in the packet—essentially the reverse of the previous situation—the value is set to 0. 

Figure 3: Pseudocode for flow object generation 
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3.3 Refine data to Flow objects 

To create a flow object, preprocessing is performed as shown in Figure 4. Among them, clustering 

is performed based on the sender's identifier, receiver's identifier, additional information, and protocol 

name. In this experiment, since the protocol used was limited to Zigbee, the additional information was 

set as the PAN ID.  Clustered packets additionally possess three features regarding each packet's length, 

time interval, and transmission direction. The values of the three features extracted from the packets 

composing the session can be seen as the features of that session. Additionally, even if they are different 

protocols, there may be sessions with similar three features, so the protocol can also be treated as a 

feature of that session. Thus, the four features extracted from the packets composing the communication 

session can be seen as the session's features. However, the time interval feature and transmission 

direction feature of the first packet composing each session are always created identically, so 

classification cannot be conducted properly with just four features. To address this issue, features 

extracted from four consecutive packets are serialized to transform into a total of 16 features for 

classification. 

3.4 Identify Internet of Things Devices 

Based on the acquired Flow Objects through the aforementioned processes, various machine 

learning algorithms are employed to learn and categorize which type of IoT device constitutes the given 

Flow Object. In most scenarios, this situation is treated as multiclass classification, with algorithms 

such as Decision Tree and Random Forest being commonly utilized. Additionally, depending on the 

specific network environment, selecting an appropriate algorithm beyond these can yield higher 

accuracy. 

Figure 4: Modification of flow object values for classification 
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4  Device Identification and Classification 

  In this chapter, we introduce a case study that implements the proposed model presented in Chapter 

3 and measures the actual performance of device identification. Figure 4 summarizes the experimental 

process graphically. Firstly, packets between IoT devices communicating using the Zigbee protocol are 

sniffed. Then, using the Wireshark tool, they are converted into pcapng files and saved on the analysis 

PC. Subsequently, seven features are extracted from each collected packet. Based on the extracted 

features, Flow Objects are generated for use in machine learning algorithms. These created Flow 

Objects, along with label data, are input into appropriately structured classification algorithms for 

training. We plan to assess the performance of the trained machine learning model to determine the 

effectiveness of the approach proposed in this study. 

4.1 Identify Internet of Things Devices 

Table 2: List of devices to configure the experiment 

Device Model 
1 Aqara Door Sensor 

2 Aqara Switch 

3 Aqara Temperature/Humidity Sensor 
4 SmartThings Multipurpose Sensor 

 

Figure 4: Diagram for device identification experiment 
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Figure 4: Experimental setup for device identification experiment 

Table 3: List of devices and labels to be identified  

Device Model Type Vendor 
1 AeoTec Button Sensor AeoTec 
2 AeoTec Motion Sensor Sensor AeoTec 
3 AeoTec Multipurpose Sensor Sensor AeoTec 
4 AeoTec Water Leak Sensor Sensor AeoTec 
5 Aqara Switch Sensor Aqara 
6 Aqara Door Sensor Sensor Aqara 
7 Aqara Temperature/Humidity Sensor Sensor Aqara 
8 Philips Hue White Actuator Philips 
9 Sengled Smart Plug Actuator Sengled 

10 SmartThings Button Sensor Samsung 
11 SmartThings Multipurpose Sensor Sensor Samsung 
12 SmartThings Smart Bulb Actuator Samsung 
13 Sonoff Smart Plug Actuator Sonoff 

 

Table 2 displays a list of IoT devices that make up the data collection environment, providing details 

about four devices connected to both the Aqara Hub M1S and Samsung SmartThings Hub. Zigbee 

communication data between each hub and the associated devices were gathered over 10 days. For the 

data collection process, a laptop equipped with the Zigbee collection tool, CC2531, was positioned 

between the hub and each device. Packet data was then saved in the form of pcap files using the packet 

monitoring software, Wireshark. Furthermore, the publicly available IoT network dataset, CIC IoT 

2022[10], was employed to incorporate information from a broader range of devices and network traffic. 

This dataset was designed for various purposes and consists of packet files for multiple protocols such 

as Zigbee, Z-Wave, HTTP, TCP, and UDP. In this study, only information concerning devices using 

the Zigbee protocol was utilized. Data from a total of 16 devices, obtained from the dataset, was 

integrated with the information gathered in the experimental setup for further experiments. Labels for 

each device under investigation were set as shown in Table 3. The device model name was labeled to 
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represent the device's product name, while the device type was categorized and labeled mainly into 

sensors and actuators. The vendor of the device was set to the name of the company that sells or 

manufactures the device. 

Table 4 shows the number of communication packets for each device included in the training set, 

test set, and validation set. Unlike the four devices for which a direct experimental environment was set 

up to capture packets, the network data collected from CIC IoT 2022 could not be further collected or 

modified, resulting in a relatively smaller dataset. 

 
Table 4: The number of packets included in each set 

Device Model 
Number of Packets 

Train Test Validation 
1 AeoTec Button 212 211 70 
2 AeoTec Motion Sensor 211 214 66 
3 AeoTec Multipurpose Sensor 1352 472 113 
4 AeoTec Water Leak Sensor 399 205 246 
5 Aqara Switch 2583 9489 1897 
6 Aqara Door Sensor 57 228 41 
7 Aqara Temperature/Humidity Sensor 160 564 89 
8 Philips Hue White 105 112 34 
9 Sengled Smart Plug 151 200 59 

10 SmartThings Button 237 213 53 
11 SmartThings Multipurpose Sensor 1749 6967 1140 
12 SmartThings Smart Bulb 540 395 142 
13 Sonoff Smart Plug 102 105 23 
 

4.2 Extract features 

Based on the collected data, we extracted 7 features using the method mentioned in Chapter 3.2. 

Feature extraction was conducted from packets corresponding to the ZBEE_NWK layer, and among 

them, the feature for the additional information section was set as the PAN ID. Subsequently, based on 

the features corresponding to s, d, p, and a, packets forming the same communication session were 

clustered to create a Flow object. 

4.3 Refine data to Flow object 

For the packets comprising the created Flow object, as described in Chapter 3.3, four packets were 

serialized to produce 16 features, with T, L, D, and P being repeated four times. The 16 values were 

subsequently used as features for the machine learning-based classification algorithm. 

4.4 Identify Internet of Things Devices 

Based on the collected flow objects, three device identification experiments were conducted: 

identification of device type, device vendor, and device model. Classification algorithms such as 

DT(Decision Tree) and RF(Random Forest) were utilized for identification. Additionally, deep learning 



 

 

 

 

 

Identifying Internet of Things Devices Using  

Machine Learning Based on Encrypted Traffic Data                                                             S.J Han et al.              

11 

 

 

 

 

 

 

 

techniques, RNN(Recurrent Neural Network), and LSTM(Long-Short Term Memory) were leveraged 

to attempt device identification. 

The parameters and the range of hyperparameters used for training the models were set as shown in 

Table 5. Models based on Decision Tree (DT) and Random Forest (RF) were optimized through 

GridSearchCV, while models based on Recurrent Neural Network (RNN) and Long Short-Term 

Memory (LSTM) were configured through Hypermodel. 

 
Table 5: Range of parameters/hyperparameters used 

Algorithm 
Parameter/ 

Hyperparameter 
Range 

RF 

n_estimators 200-500 

max_depth 5-30 
min_samples_leaf 2-10 
min_samples_split 2-10 

max_features auto, sqrt, log2 

DT 

max_depth 5-30 

min_samples_leaf 2-20 

min_samples_split 2-20 

max_features auto, sqrt, log2 

RNN 

units 64-256 (steps of 16) 

num_layers 1-3 

dropout rate 0.1-0.3 (steps of 0.1) 

LSTM 

units 64-256 (steps of 16) 

num_layers 1-3 

dropout rate 0.1-0.3 (steps of 0.1) 

5 Results 

Table 6: Results of the device model name identification experiment 

Algorithm 
Evaluation Metrics 

Accuracy Precision Recall F1-Score 
RF 93.89% 0.8478 0.7259 0.7538 
DT 93.82% 0.8333 0.7208 0.7432 

RNN 83.80% 0.8278 0.8380 0.8180 
LSTM 81.41% 0.7914 0.8141 0.7893 
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Table 7: Results of the device type identification experiment 

Algorithm 
Evaluation Metrics 

Accuracy Precision Recall F1-Score 
RF 97.90% 0.9815 0.9734 0.9772 
DT 98.05% 0.9824 0.9756 0.9788 

RNN 90.08% 0.9068 0.9008 0.8018 

LSTM 87.71% 0.8806 0.8771 0.8780 
Table 8: Results of the device vendor identification experiment 

Algorithm 
Evaluation Metrics 

Accuracy Precision Recall F1-Score 
RF 94.76% 0.8947 0.7315 0.7798 
DT 94.64% 0.8967 0.7308 0.7774 

RNN 89.82% 0.8891 0.8982 0.8898 

LSTM 85.69% 0.8324 0.8569 0.8389 
 

The results of each identification experiment are depicted in Tables 6, 7, and 8. For the model that 

identifies device model names, an accuracy of 93.89% was achieved using the RF algorithm. However, 

the experiment identifying the model name displayed the lowest accuracy. This is believed to be because, 

among the three kinds of experiments, this one had the highest label diversity. For the same reason, the 

experiment identifying the device type, that had the least label diversity, was observed to display a 

relatively high accuracy. For the experiment identifying the device type, an accuracy of 98.05% was 

achieved using the DT algorithm. Lastly, for the experiment identifying the device manufacturer, an 

accuracy of 94.76% was achieved using the RF algorithm. 

In conclusion, it was confirmed that utilizing RF and DT allowed for the highest classification 

performance. Notably, they achieved higher accuracy than RNN and LSTM, which specialized in 

processing time-series data. However, the two deep learning-based classification techniques can vary 

significantly depending on their structure and complexity. Therefore, further research enhancing the 

diversity of model parameters appears to be necessary. Also, some models composed of DT and RF 

achieved lower F1-Scores compared to those constructed with RNN or LSTM. This indicates that even 

if models built with RF and DT have high Accuracy, they might have lower Precision and Recall, 

suggesting that there's room for improvement in models based on these two algorithms. 

6 Conclusion 

As the scope of IoT services expands with the advancement of technology, the incidence of IoT 

security intrusions is also increasing. From the perspective of intrusion investigation, the device 

identification phase is one of the critical tasks for identifying the source of information for digital 

forensics. However, due to the diversity of devices and encrypted communication, device 

identifica7tion based on network traffic is a challenging task. In this study, we proposed a method to 

create a flow object by extracting identifiable information from the unencrypted header area and an IoT 

device identification solution based on flow objects using a machine learning classification model. As 

a result of conducting device identification experiments after setting up an actual IoT device 
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environment, it was confirmed that it could achieve an accuracy of up to 98.05%. The dataset and code 

used in this experiment are available in the GitHub repository [11]. 

The flow object presented in this study was designed and implemented not to be based on a specific 

protocol. However, the network data collected in this study consists of Zigbee network packets, 

necessitating additional experiments for supplementation. Therefore, we plan to conduct further studies 

targeting additional protocols such as TCP/IP and Z-Wave in the future study. 
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