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Abstract 

Deep learning models have often been adopted to recognize input images in edge devices. 

However, edge devices that implement a Deep Neural Network (DNN) are physically 

accessible to a malicious attacker. In particular, fault injection attacks on these devices 

can lead to misclassification of an image and can cause serious accidents. In this paper, 

we introduce a clock glitch, a typical form of fault injection attack, into a device running 

a DNN model to induce misclassification. As a result of our experiment on a 

microprocessor implemented with a DNN for image classification, misclassification can 

be achieved by appropriately injecting clock glitches. We propose two countermeasures 

specifically against fault injection attacks: One is to check the number of loops in the 

softmax function, and the other is to accumulate the normalized output values and then 

check this result. 

 

Keywords: Edge Device Security, Fault Injection Attacks, Deep Neural Networks, Misclassification 

on DNN   

1 Introduction 

Recently, deep learning technologies can be used for image recognition in real life such as self-

driving cars, smart homes, IoT applications, and so on. Nevertheless, there are implementation 

vulnerabilities in Deep Neural Network (DNN) such as Multiple Layer Perceptron (MLP) and 

Convolutional Neural Network (CNN). A DNN implemented for image recognition can induce 
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misclassification of the original input image by fault injection during network processing [1-3]. Such 

malicious image misclassification may cause serious accidents to vehicle systems and may expose 

personal information.  

In particular, remote edge devices implemented with DNN can be easily accessed by attackers, so 

physical attacks such as side-channel attacks or fault injection attacks are realistically possible. Fault 

injection attacks (a type of physical attack) use methods such as clock glitches, voltage glitches, or laser 

radiation to cause malfunctions while the device is operating. The main purpose of fault injection attacks 

attempted in the past was to extract the secret key by injecting faults into the cryptographic circuit [4], 

[5]. On the other hand, several attacks have recently been proposed to induce misclassification by 

applying fault injection attacks on DNNs [6]-[9]. 

Although Liu et al. provided a white-box attack on deep neural networks based on software 

simulations, their attack failed to provide practical results in real implementation environments [6]. 

Zhao et al. proposed a framework to inject stealthy faults for selected inputs while keeping overall test 

accuracy performance [7]. Bereir et al. initiated the practical study of leveraging fault injection attacks, 

by using a laser injection technique on an embedded device. Their results showed that it is possible to 

achieve a misclassification by injecting faults into the hidden layer of the DNN [8]. Fukuda et al. focus 

on the softmax function of the output layer and evaluate the fault injection attack performance using 

clock glitches [9]. As a result of performing a fault injection attack on a DNN implemented on an 8-bit 

microprocessor, an attacker can achieve misclassification of input images. 

In this paper, we experimentally confirmed that injecting a clock glitch into a DNN implemented in 

an embedded system using software can induce misclassification with a high probability. In particular, 

fault injection targeting the softmax activation function of the output layer was effective in inducing 

misclassification. In addition, we present two countermeasures against fault injection attacks. One is to 

check the number of repetitive loops when executing the algorithm, and the other is to check the results 

of accumulating normalized output values. 

This paper is organized as follows. Chapter 2 provides preliminaries on Deep Neural Networks 

(DNN) and clock glitch operation. In Chapter 3, we investigate the weak algorithmic points regarding 

the attack model, discuss the experimental setup, and analyze the results. Chapter 4 introduces 

countermeasures against such attacks, and Chapter 5 concludes the paper. 

2 Preliminaries 

2.1 Deep Neural Network 

Deep learning utilizes artificial neural networks with multiple hidden layers to learn complex 

patterns in data. DNNs have shown remarkable performance in research fields such as image 

recognition and natural language processing. Among various DNN architectures, Multi-Layer 

Perceptron (MLP) is becoming the basic type. One MLP consists of an input layer, one or more hidden 

layers, and an output layer. The basic structure of an MLP model for classification tasks is shown in 

Fig. 1.  

The computation in each neuron of DNN for classification is depicted in the following equation. 

Here, x represents the input, w stands for the weight, b is the bias, f denotes the activation function, and 

y is the output value.  

 𝒚𝒌 = 𝑓(∑ (𝑤𝑖,𝑘 ∙ 𝑥𝑖) + 𝑏𝑘
𝑛−1
𝑖=0 )                (1) 
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The activation function transforms the summed input signals into an output signal. Among the 

various activation functions, the softmax is commonly used as the activation function of the output layer 

of a classification model. The softmax function performed at each node is shown in Eq. (2). 

 𝑶𝒌 = 𝒔(𝒚𝒌) =  
𝒆𝒙𝒊

∑ 𝒆
𝒙𝒋𝒏

𝒋=𝟏
             (2)  

Where x represents the input of the softmax function, and n is the number of classifications. The 

softmax function normalizes the output for each neuron, ensuring that the sum of the output values 

equals 1. Based on this characteristic, the classification model interprets the softmax output as the 

predicted probability for each class.  In this study, we focus on the softmax function, specifically its 

output. Some glitches on the final output node can be meaningfully impacted, allowing attackers to 

conduct attacks that lead to misclassifications. 

 

 
Figure 1: Structure of MLP 

2.2 Clock Glitch 

A fault injection attack maliciously introduces faults into a device to induce specific malfunctions 

or anomalies. These attacks can be classified into various categories based on the types, effects, and 

durations of the faults. The types of faults include clock glitches, voltage glitches, laser insertions, and 

others. In this paper, we adopt an attack method that induces misclassification by injecting clock 

glitches proposed by Fukuda et al. [9] 

A clock glitch is an attack that disrupts the normal operation of a digital system, most notably a 

computing device such as a microcontroller or FPGA, by injecting a temporary abnormal clock into the 

timing of a clock signal [10]. Fig. 2 explains the basic principle of the fault injection attack using a 

clock glitch.  

 

 
Figure 2: Fault injection attack using clock glitch 
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The system clock is the key signal that allows the various components in a digital circuit to operate 

in synchronization. The operational result of the combinational circuits is recorded in registers at the 

rising edge of the clock.  If a clock glitch is injected before the arithmetic operations of combinational 

circuits are completed, then a malfunction is induced by storing the incorrect result of an operation in 

the register. 

3 Fault injection attacks using clock glitch 

3.1 Attack Model on Softmax Function  

We assume that an attacker can physically access the target device to inject clock glitches. The 

structure of the target DNN model is already known to the attacker. The primary objective of the 

attacker is to induce misclassification in the DNN model by applying clock glitches to the DNN 

accelerator.  

A strategic point for the insertion of these glitches is the softmax function, which serves as the 

activation function of the output layer. The softmax function is the most commonly used in the output 

layer for multiclass classification for input datasets such as MNIST digit images. 

The softmax function finally outputs the probabilities for each class. Since the softmax function is 

closest to the final output, it is especially susceptible to even a small number of glitches, which 

significantly affects the DNN performance. The softmax function can be implemented in the 

microcontrollers based on Algorithm 1.  

 

 
 

During the first iteration of the softmax function, when 𝑘 = 0, the loop proceeds normally. However, 

as index k becomes 1, a clock glitch is injected in line 5 of algorithm 1, causing the iteration to be 

skipped. That is, the attacker skips the loop process of lines 6-7 at the timing when 𝑘 =  1, 2, 3, … 𝐽 −
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1. Then, all array values except 𝑆0 will be 0. In an attack like this, only the final 𝑂0  value becomes 1 

and it is always classified as the first class regardless of the values of the input.  

Secondly, we assume that the fault injects into the process of 6-7 lines in Algorithm 1. This is 

calculated by accumulating the values of the exponential operation for each class.  This fault injection 

attack can calculate inaccurate intermediate values 𝑆𝑘  or incorrect accumulated value, which can lead 

to misclassification. 

Thirdly, we discuss the possibility of a fault injection attack at 9 lines in Algorithm 1. These 

processes calculate the final classification possibility by dividing the value of the exponential operation 

for each class by the accumulated value. In this case, the divisional operation is not processed properly 

after the faulty clock glitch is injected. Ultimately, this attack can also lead to misclassification. 

We consider that attacks changing the intermediates values such as 𝑆𝑘, variable sum and 𝑂𝑘 cannot 

induce the misclassification intended by the attacker. Therefore, we will demonstrate the fault injection 

experiment at the loop skip method at line 5 of Algorithm 1. In fact, this attack experiment can lead to 

misclassification with a high probability. 

 

3.2 Experiment Setup 

The target DNN model for our fault injection attack is an MLP that performs MNIST handwritten 

digit classification. Since this classification takes input digit images from 0 to 9 and predicts the number, 

then the number of classes is 10. The target MLP consists of an input layer, three hidden layers, and an 

output layer. After the training process using the MNIST dataset, we implement the MLP for test image 

classification on a microprocessor. The detailed structure of the MLP used in our experiment is shown 

in Table 1. 

 

 
Table 1: Structure of experimental MLP model for MNIST dataset 

To evaluate the possibility of fault injection attacks, we conducted our experiments on the 

Chipwhisperer platform developed by New AE technology, which includes the CW-Lite (cw-1173). 

Furthermore, our experiments are targeting the CW308 UFO Target Board, which adopts the ARM 

Cortex-M4 STM32F303 microcontroller. The softmax algorithm in the MLP model is implemented on 

this target microcontroller.  The photograph of the experimental setting is shown in Fig. 3.  

 

Layer Number of Neurons Activation function 

Input Layer 784 - 

Hidden Layer – 1 128 ReLu 

Hidden Layer – 2 64 ReLu 

Hidden Layer – 3 32 ReLu 

Output Layer 10 Softmax 
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Figure 3: Photograph of the experimental setting 

 

The target device runs the MLP program with a clock frequency of 7.38MHz. In the practical clock 

glitch attack, we set the 'Repeat' value to 5, allowing for glitch insertion to be attempted five times. 

Additionally, the 'offset' and 'width' were set to -38 and -10, respectively. The detailed shape of the 

clock glitch used in our experiment is described in Table 2. 

 

 
Table 2: Parameter setting of experimental clock glitch 

3.3 Experimental Results 

The results of the MNIST classification using the microcontroller are shown in Fig. 4. While the 

accuracy of the test images in the normal operation was 96.9% shown in Fig. 4. a), the accuracy under 

the clock glitch attack phase drops to about 28.4% shown as in Fig. 4. b), Both classifications were 

conducted on the 5,000 MNIST digit images as a test dataset. The goal we attempted in the fault 

injection attack was to perform only the first loop at the point of attack (line 5 of Algorithm 1) and skip 

the remaining iterations. Since the 80.1%(=4,005/5,000*100%) of all test images are classified into 

number 0. Since the purpose of the attack was to induce the DNN to classify any input as '0', any 

naturally occurring '0' labels in the test dataset make it challenging to ascertain the true success of the 

attack. Excluding those naturally occurring '0' values, the success rate of our fault attack is 

78.1%(=3,545/4,540*100%). 

 

Clock frequency 7.38 MHZ 

Glitch Repeat 5 

Glitch Offset - 38 

Glitch Width - 10 
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a) DNN classification in normal operation b) DNN classification under fault attack 

Figure 4: Classification results for the MNIST dataset 

 
 

 

 

4 Countermeasures Against Fault Injection Attacks 

The primary objective of fault injection attacks on the softmax activation function in the output layer 

is to induce misclassification or malfunction within the DNN model. To accomplish this attack goal, an 

attacker injects intentional faults into the counter values in looped calculation or variables to store 

intermediate calculation values such as 𝑆k, and 𝑂𝑘. Considering these attack points, this paper proposes 

a countermeasure that integrates two check conditions to ensure the correct operation of softmax 

function. 

4.1 Checking Loop Counter 

The first countermeasure is to check whether the correct loop is performed. As shown in Algorithm 

1, the number of loop iterations should correspond to the number of output nodes. So, if we have J 

output nodes, the final loop counter we need to perform must have a value equal to J. If this condition 

is satisfied, then the next processes are continued. Otherwise, the DNN model will stop working to 

prevent potential malfunctions. Given that fault injection attacks on the loop statement can occur at two 

distinct points during the execution of the softmax function, it is essential to check the number of 

iterative operations after each of these loops is completed. 

4.2 Summation of Classification Possibilities 

Nevertheless, an attacker could still induce faults into variables to store intermediate values. This 

attack can also lead to misclassification of images. In this case, even if we add the classification 

probabilities of all output nodes, the value will not become 1. We propose a function to check the 

accumulated value based on the fact that the summation of the normalized probability values of the 

final output layer becomes 1. If this condition is not satisfied, then the next processing is stopped. 

Otherwise, the DNN model will return the classification possibilities as the final output.  
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The following Algorithm 2 shows the secure softmax algorithm that complies with both check 

conditions. Consequently, we confirm that the proposed softmax algorithm can counteract against fault 

injection attacks. 

 

 

5 Conclusion  

Recently, deep learning technology has been widely used in the fields of facial recognition and 

image detection in smart homes and IoT-based edge devices. Nevertheless, when a DNN is executed 

on edge devices, some physical attacks such as side-channel analysis or fault injection should be 

considered. 

In this paper, we demonstrated that a clock glitch attack, a variant of fault injection attacks, can be 

effectively utilized to achieve misclassification of MNIST digit images. Our target algorithm for fault 

injection attack is the softmax function of the output layer. The DNN model for the classification of 

input digit images is implemented on the STM32F303 microcontroller. By injecting a clock fault after 

running the first loop process, 78.1% of the test data was misclassified as an adversarial class rather 

than a true class. Additionally, we proposed two novel algorithmic countermeasures designed for the 

secure execution of the softmax function under fault injection attacks. One is to check that the number 

of loop iterations is equal to the number of output nodes. The other is to verify that the accumulated 

value of classification possibilities is 1. As a result, the combination of these countermeasures can 

ensure the security of devices performing DNN from fault injection attacks. 
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