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Abstract

In this paper, we present a new framework for constructing quantum circuits of S-boxes.
We model the quantum circuits of S-boxes using two layers: Toffoli and linear layers. We
generate vector spaces based on the values of qubits used in the linear layers and apply
them to find quantum circuits. The proposed framework finds the quantum circuit by
matching elements of vector spaces generated from the input and output of a given S-box
using the meet-in-the-middle strategy. We developed a tool to apply this framework to 4-
bit S-boxes. While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds
circuits that can be implemented with 4 qubits, the proposed tool additionally achieves
the circuits with 5 qubits. This tool can find quantum circuits of 4-bit odd permutations
based on the CNOT, NOT, and Toffoli gates, whereas LIGHTER-R cannot perform this task
in the same environment. We expect that this technique can become a critical step toward
finding optimized S-box quantum circuits.
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1 Introduction

Quantum computers speed up many algorithms based on the superposition principle of quan-
tum mechanics, presenting considerable influence on mobile internet security and cryptogra-
phy. Shor’s algorithm [1] exponentially reduces the complexity of attacking public-key schemes
on quantum computers. Since 2016, the National Institute of Standards and Technology
(NIST) has been conducting the post-quantum cryptography standardization process [2]. For
symmetric-key schemes, Grover’s algorithm [3] and Simon’s algorithm [4] display significant
performance to attack schemes, but these algorithms do not wholly compromise the security
of such systems. However, in a quantum computing environment, symmetric-key cryptography
may have weak properties not yet studied for each algorithm. Unknown quantum attacks using
them may exist; this, in-depth research should be conducted.

The S-box is a crucial component that provides confusion in symmetric-key schemes. When
implementing a cipher as a quantum circuit, the linear layer can be implemented with only
NOT and controlled-NOT (CNOT) gates. However, highly structured nonlinear layers, such as
the S-box, must employ relatively expensive Toffoli gates and numerous qubits. In quantum
circuits for symmetric-key schemes, the S-box incurs the greatest cost.

The complexity of a quantum circuit is evaluated by the number of qubits and the Toffoli-
depth defined by the number of nonparallelizable Toffoli gates. Optimizing these two parameters
increases the implementation efficiency of quantum computers, improving the ability of attackers
to perform quantum exhaustive searches and dedicated attacks using Grover’s algorithm. Hence,
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optimizing the quantum circuits of S-boxes is crucial for assessing the security of symmetric-key
schemes against quantum computer-based attacks.

Extensive recent research has been conducted on finding efficient quantum circuits for the
Advanced Encryption Standard (AES). Grassl et al. [5] initially proposed a quantum circuit for
AES and introduced a zig-zag structure to reduce the number of qubits required for implemen-
tation. Subsequently, several studies have been constructed to reduce the number of qubits to
implement AES [6, 7, 8, 9]. However, in NIST’s post-quantum cryptography standardization
process, the circuit’s Toffoli-depth represents a crucial parameter. In response, Jaques et al. [10]
attempted to construct an AES quantum circuit with a shallow Toffoli-depth. Recently, Huang
and Sun [9] proposed an AES quantum circuit with the shallowest depth.

Contributions. This paper provides a new framework for constructing quantum circuits
C : |α⟩ → |S(α)⟩ of S-boxes. We treat the quantum circuits of S-boxes using only CNOT, NOT,
and Toffoli gates, called CNT-circuits. Using the CNT-circuits, we provide a framework for
finding the quantum circuits of the S-boxes with low Toffoli-depths according to the limited
number of qubits by matching elements of vector spaces generated from the inputs and outputs
of the S-boxes. The framework employs a meet-in-the-middle strategy. The key is to analyze the
vector spaces spanned by the values before and after the Toffoli layers. The proposed framework
provides a specialized search on Toffoli-depth by ignoring the detailed implementations of linear
layers. To the best of our knowledge, no study has analyzed the Toffoli-depth and number of
qubits through the vector space and the basis analysis between Toffoli layers in quantum circuits
of S-boxes.

To verify the effectiveness of the proposed framework, we propose a technique and tool for
applying the framework to a 4-bit S-box. These components are currently used as essential
elements in many AEAD schemes and block ciphers [11, 12, 13, 14, 15]. Finding quantum
circuits of S-boxes supports an accurate analysis of the quantum quantitative complexity of
target ciphers. The technique involves two algorithms to apply to a 4-bit S-box, leading to
one feature that is missing in existing algorithms for CNT-circuits. LIGHTER-R [16] provides
Toffoli-depth optimized quantum circuits of 4-bit S-boxes with a 4-qubit restriction. However,
this approach fails if the target 4-bit S-boxes are odd permutations, which occurs due to the
theorem that odd permutation cannot be implemented with 4 qubits in CNT-circuits and
requires at least 5 qubits [17]. The proposed algorithms offer a more comprehensive range of
quantum circuits compared to LIGHTER-R in terms of the Toffoli-depth and number of qubits
(up to 5). This improvement allows the algorithms to produce the quantum circuits of the 4-bit
S-boxes, an odd permutation beyond the capability of LIGHTER-R. Given that half of the 4-bit
S-boxes are odd permutations, this result allows researchers to implement quantum circuits for
all 4-bit S-boxes.

Paper Organization. Section 2 describes the quantum computation and quantum circuits.
Section 3 defines the CNT-circuit and describes its properties. Section 4 describes the proposed
framework for finding quantum circuits of 4-bit S-boxes according to a limited number of qubits
and presents an example. Section 5 presents the conclusions.

2 Quantum Computation and Quantum Circuits

A fundamental concept in classical computing involves the bit, characterized as either 0 or 1.
Conversely, a qubit plays the role of a bit in quantum computing, holding 0 and 1 at the same
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time according to the superposition principle of quantum mechanics. The values |0⟩ and |1⟩
are orthonormal bases of a two-dimensional Hilbert space, also called the computational basis.
The superposition state of a qubit can be represented as α |0⟩+β |1⟩ (α, β ∈ C), and such α
and β are the complex probability amplitude. The qubit’s state is destroyed by measurement,
after which one can observe |0⟩ or |1⟩, with the respective probabilities of |α|2 and |β|2 (thus,
|α|2 + |β|2 = 1 holds). To describe n qubits, we require a 2n-dimensional Hilbert space for
which the orthonormal bases are |00 · · · 0⟩, |00 · · · 1⟩, . . . , |11 · · · 1⟩, and total 2n.

This work is primarily concerned with quantum circuits consisting of CNOT, NOT and
Toffoli gates. A CNOT gate is the two-qubit CNOT gate defined by CNOT : |a⟩ |b⟩ 7→
|a⟩ |b⊕ a⟩, and a NOT gate is the single-qubit gate defined by NOT : |a⟩ 7→ |a⊕ 1⟩. A
Toffoli gate is the three-qubit CNOT gate defined by Toffoli : |a⟩ |b⟩ |c⟩ 7→ |a⟩ |b⟩ |c⊕ ab⟩. A
Toffoli gate can manage the XOR and AND of classical gates at once. These quantum gates
are presented in Figure 1.

A quantum circuit using only CNOT, NOT, and Toffoli gates is defined as a CNT-circuit. In
the CNT-circuit, the NOT gates can be moved to the circuit’s last operation without changing
the Toffoli-depth using the properties of Figure 2. The NOT gates gathered in the last operation
are equivalent to using an XORing with a constant value in the S-box. As all S-boxes can be
implemented with CNT-circuits, CT-circuits (without NOT gates) can implement all S-boxes
satisfying 0 7→ 0 [17].

Figure 1: CNOT(left), NOT(middle), and Toffoli(right) gates

3 Modeling Quantum Circuits of S-Boxes

We consider the n-bit S-box defined by a vectorial Boolean function Fn → Fn. In the S-box
circuit, n Boolean coordinate functions are represented by various wires. Each wire connects
to n input bits, and additional wires may be required depending on the circuit. These wires
become qubits in a quantum circuit.

We modeled CT-circuits for C : |α⟩ |0⟩ → |S(α)⟩ |0⟩ of S-boxes satisfying 0 7→ 0. We let C
use q qubits and have a Toffoli-depth of t. We define layers with only Toffoli gates as Toffoli
layers and treat the layers between them as linear layers (including empty layers). In addition,
C has t + 1 linear layers, including two the outermost linear layers. We establish the indices
of the layers as represented in Equation (1). The CNOT gates can be implemented without
additional qubits [18], and their cost is exempt from the analysis model. Therefore, we omit
the detailed implementation of the CNOT gates in the linear layer:

C : Lt ◦ Tt ◦ Lt−1 ◦ Tt−1 ◦ · · · ◦ L1 ◦ T1 ◦ L0. (1)

To facilitate finding the circuit, we arrange Toffoli gates in order within the Toffoli layers.
We assume that the control and target qubit positions of the Toffoli gates are fixed, and the
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Figure 2: Properties of NOT gates

exchange of wires that occurs while fixing them is absorbed by the linear layers. In detail,
the control qubits of the i-th Toffoli gate use the (3i − 2)-th and (3i − 1)-th qubits, and the
3i-th qubit serves as the target qubit. Afterward, Toffoli gates are arranged consecutively in
the Toffoli layers, and the layers can be implemented based on the number of Toffoli gates (See
Figure 3).

Figure 3: Toffoli layer in our model

Implementing linear layers is equivalent to knowing the input and output values of the linear
layers. When Toffoli layers are implemented, the input values of the next linear layer can be
determined through the output values of the previous linear layer. If the output values of t
linear layers are known, the entire circuit can be implemented.

The input and output of the linear layer are represented by the qubit values at each point.
We treat the qubit values as Boolean functions and consider the vector space they span. The
vector spaces spanned at the input and output points of the linear layer are identical. We
define the vector space generated by Li as Xi, and each Xi is transformed into Xi+1 by Ti+1

corresponding to the (i+ 1)-th Toffoli layer.

span(x1, · · · , xn) = X0
T1−→ X1

T2−→ · · · Tt−→ Xt = span(y1, · · · , yn).

4 Finding Quantum Circuits of 4-bit S-Boxes Using Up
to 5 Qubits

The vector space Xi is spanned by the qubit values for the input and output of Li. Of the three
qubits included in one Toffoli gate, only the target qubit changes in value. The intersection of
two consecutive spaces, Xi and Xi+1, is nonempty because qubit values can be invariant. The
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intersections between spaces spanned in a circuit with the minimum Toffoli-depth increase as
the indices of the spaces become closer. This logic is generalized in Theorem 1.

Figure 4: Description of Theorem 1

Theorem 1. If the circuit uses q qubits, for any i ≤ t− r,

dim(Xi)− dim(Xi ∩ Xi+r) ≤ r⌊q/3⌋,
dim(Xi+r)− dim(Xi ∩ Xi+r) ≤ r⌊q/3⌋.

Proof. There are r Toffoli layers between the points of Xi and Xi+r. A maximum of ⌊q/3⌋ Toffoli
gates can be used in one Toffoli layer; thus, at most r⌊q/3⌋ values are not in Xi. Therefore, we
obtain dim(Xi)− dim(Xi ∩ Xi+r) ≤ r⌊q/3⌋. The lower equation uses a similar process.

According to the above theorem, we obtain the lower bound of the Toffoli-depth as follows
for the quantum circuit |α⟩ → |S(α)⟩.

Corollary 2. We let X0 be the set of all n-variable Boolean linear functions (including the
zero function), and Xt be the set of all component functions of the S-box S (including the zero
function). Then, the quantum circuit’s Toffoli-depth is C : |α⟩ → |S(α)⟩ of n-bit S using q
qubits is (n− dim(X0 ∩ Xt))/⌊q/3⌋ or greater.

Proof. In this special case, i = 0 and r = t in Theorem 1. The proof is as follows:

dim(X0)− dim(X0 ∩ Xt) ≤ t⌊q/3⌋,
n− dim(X0 ∩ Xt) ≤ t⌊q/3⌋,

(n− dim(X0 ∩ Xt))/⌊q/3⌋ ≤ t.

4.1 Meet-in-the-middle Strategy

Quantum circuits comprise reversible gates; thus, the implementation of these circuits is found
in both the forward and backward directions:

forward : X0 → X1 → · · · → Xt,

backward : Xt → Xt−1 → · · · → X0.

The proposed algorithms confirm how many values of the newly constructed vector space belong
to the opposite vector space. For example, we consider that Xi and Xt−j are obtained by
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implementing up to the i-th Toffoli layer in the forward direction and the j-th Toffoli layer
in the backward direction. The proposed algorithms select Xi+1 to implement the (i + 1)-th
Toffoli layer in the forward direction, yielding the largest intersection with Xt−j . In this case,
|Xi ∩ Xt−j | < |Xi+1 ∩ Xt−j | holds, and if Xi+1 = Xt−j , the circuit is completely implemented.

We describe the process of implementing the 4-bit S-box S(x1, x2, x3, x4) = (y1, y2, y3, y4)
using fewer than 5 qubits. Only one Toffoli gate exists in each Toffoli layer. We let P0 =
span(x1, x2, x3, x4) and Pt = span(y1, y2, y3, y4). If P0 = Pt holds, S is a linear function, so
the Toffoli-depth is 0. The linear function can be implemented without ancilla qubits (i.e., with
4 qubits).

The proposed algorithms take (Xi,Xt−j) as input, and (Xi+1,Y) as output, which are closer
spaces than (Xi,Xt−j). Additionally, Y can be either Xt−j or Xt−j−1. The following implies
that (Xi+1,Y) is closer than (Xi,Xt−j):

• |Xi+1 = Y| holds.

• If |Xi+1 ̸= Y|, then |Xi+1 ∩ Y| > |Xi ∩ Xt−j |.

Algorithm 1 finds only the forward direction, and Algorithm 2 discovers both directions
based on the meet-in-the-middle strategy. First, we describe Algorithm 1. Suppose we generate
a set F→ that collects the target qubit values that the Toffoli gates in Ti+1 can have. When
2q = |Xi|, the set of all qubits’ values at the input point of Ti+1 becomes the basis of Ti+1, such
that the elements in the set are independent of each other.

F→ = {ab⊕ c|a, b(̸= a), c ∈ Xi, if 2
q = |Xi|, then a, b, and c are linearly independent}.

There can be several combinations of a, b, c ∈ Xi that satisfy p = ab⊕ c for element p of F→.
For each p, a, b, and c, we can construct a basis Bi of Xi. In addition, Bi must be constructed
so that a and b belong to it, and if c is linearly independent of {a, b}, we adjust c to belong to
Bi as well. We let d and e be linearly independent of {a, b, c} and {a, b, c, d}, respectively, and
Bi is possible in the following cases:

1. When |Xi| = 32, Bi = {a, b, c, d, e}.

2. When |Xi| = 16 holds and a, b, and c are linearly dependent, Bi = {a, b, d, e}.

3. When |Xi| = 16 holds and a, b, and c are linearly independent, Bi = {a, b, c, d}.

Algorithm 1: Forward finding for quantum circuits

input : Xi, Xt−j , n, q
output: a set D of pairs (Bi,Xi+1,Xt−j)
D ← {}
F→ ← {ab⊕ c|a, b(̸= a), c ∈ Xi, if 2

q = |Xi|, then a, b, c are linearly independent}
for p ∈ F→ do

for a, b, c ∈ Xi do
for each case of Bi and Bi+1 do
Xi+1 ← span(Bi+1)
if (Xi+1,Xt−j) is closer than (Xi,Xt−j) then
D ← D ∪ {(Bi+1,Xi+1,Xt−j)}

return D
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Algorithm 2: Meet-in-the-middle finding for quantum circuits

input : Xi, Xt−j , n, q
output: a set D of pairs (Bi+1, Bt−j−1,Xi+1,Xt−j−1)
D ← {}
F→ ← {ab⊕ c|a, b(̸= a), c ∈ Xi, if 2

q = |Xi|, then a, b, c are linearly independent}
F← ← {αβ ⊕ γ|α, β( ̸= α), γ ∈ Xt−j , if 2

q = |Xt−j |, then α, β, γ are linearly independent}
for p ∈ F→ do

for a, b, c ∈ Xi do
for each case of Bi and Bi+1 do
Xi+1 ← span(Bi+1)
for ρ ∈ F← do

for α, β, γ ∈ Xt−j do
for each case of Bt−j and Bt−j−1 do
Xt−j−1 ← span(Bt−j−1)
if (Xi+1,Xt−j−1) is closer than (Xi,Xt−j) then
D ← set ∪ {(Bi+1, Bt−j−1,Xi+1,Xt−j−1)}

return D

Figure 5: Description of the meet-in-the-middle strategy

We let Bi+1 be the basis of Xi+1 to be generated. In Case 1, c changes to p, resulting in
Bi+1 = {a, b, p, d, e}. In Case 2, c also changes to p, but because c did not become a basis,
Bi+1 = {a, b, p, d, e} holds. In Case 3, c can change to p or p can be newly added, and Bi+1

becomes {a, b, p, d} or {a, b, p, c, d}. If (Xi+1,Xt−j) is closer than (Xi,Xt−j) for all cases, we
adopt these spaces and store (Bi+1,Xi+1,Xt−j). After this process is performed for all p, the
stored set of (Bi+1,Xi+1,Xt−j) becomes the output.

If Algorithm 1 outputs an empty set, we proceed with Algorithm 2. The latter generates
F→ in the same way as Algorithm 1. Subsequently, we create a set F← that collects all possible
target qubit values for the Toffoli gates in Tt−j−1.

F← = {αβ ⊕ γ|α, β(̸= α), γ ∈ Xt−j , if 2
q = |Xt−j |, then α, β, and γ are linearly independent}.

For each p ∈ F→ and a, b, c ∈ Xi, we consider Xi+1 and Bi+1 for all cases constructed in the
mentioned manner. For each ρ ∈ F← and α, β, γ ∈ Xt−j , the same process can be taken again
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to obtain Xt−j−1 and Bt−j−1. If (Xi+1,Xt−j−1) is closer than (Xi,Xt−j) for all cases, we adopt
these spaces and store (Bi+1, Bt−j−1,Xi+1,Xt−j−1). After this process is performed for all p
and ρ, the stored set (Bi+1, Bt−j−1,Xi+1,Xt−j−1) represents the output. We depict the change
in the intersection due to the meet-in-the-middle strategy in Figure 5.

The process of constructing F→ and F← is determined by the dimensions of Xi and Xt−j ,
respectively. Thus, if the dimension is d, the computational cost is 23d. When employing
Algorithm 2, the complexity of finding both p ∈ F→ and ρ ∈ F← is about 26d (e.g., if d = 5,
the complexity is 230). The memory complexity depends on how many close spaces are stored;
thus, it depends on the S-box.

4.2 Results for Some 4-bit S-Boxes

We applied the proposed algorithms to various 4-bit S-boxes. First, we consider all 4-bit optimal
S-boxes classified by Leander and Poschmann [19] to demonstrate the validity of the algorithms
(see Table 1). In addition, LIGHTER-R could not find the circuits of odd permutations (i.e.
G0, G1, G2, G8, G9, G13, and G14), whereas the proposed algorithm could do so.

Table 1: Toffoli depths of optimal S-boxes using 5 qubits

Class G0 G1 G2 G3 G4 G5 G6 G7

Toffoli-depth 4 4 4 7 5 5 7 5
Class G8 G9 G10 G11 G12 G13 G14 G15

Toffoli-depth 4 7 7 7 7 5 7 7

Second, we consider the 4-bit S-boxes of GIFT [15], SKINNY [14], and Satrunin [20] (see
Table 2). The proposed algorithms and LIGHTER-R output identical Toffoli-depths in the circuit
implementation when using 4 qubits. We executed the proposed algorithm using 5 qubits but
outputted the same Toffoli-depths. To compare the results with those of existing circuits, we
checked the AND-depth, which closely relates to the Toffoli-depth. Quantum circuits with a
Toffoli-depth that is the same value as the AND-depth always exist, allowing a comparison [21].
These values represented the same AND-depths of the classical implementation as claimed by
the designers of GIFT and SKINNY. In the case of Saturnin, we found a more efficient circuit
with an AND-depth of 5, rather than a circuit with an AND-depth of 6 that the designers
found.

Figure 6 is the circuit of Saturnin’s S-box σ0 that we found. We omitted the expression of
the CNOT gates in Li. For wires going to the same output on Li, their values are XORed.

Discussion of Results Based on the Proposed Algorithms. For each i, the algorithms
take a pair (Xi,Xt−j) as input and select the closer pair (Xi+1,Y), where Y can be either
Xt−j or Xt−j−1. The value j is determined by the number of times Algorithm 2 repeats.
In the process, a pair that is not closer to any i and j is never selected. This fact incurs
a weakness in that the proposed algorithms sometimes fail to find circuits with a minimum

Table 2: Toffoli depths of special S-boxes using 4 qubits

cipher Saturnin SKINNY GIFT
Toffoli-depth of the S-box 5 4 4
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Figure 6: Circuit of Saturnin S-box σ0

Toffoli-depth. However, we can determine the entire circuit’s lower bound for the Toffoli-depth
using Corollary 2. If the algorithms find a circuit with this lower bound, that implies the
minimum Toffoli-depth. Furthermore, the algorithms offer the advantage of finding all circuits
with such a lower bound, because if a circuit with that lower bound exists, forward finding
discovers it (see Algorithm 1). If the outputted circuit does not have a lower bound, then the
Toffoli-depth of the S-box is greater than the lower bound. We can confirm that the results of
G0, G1, G2, G4, G5, G7, G8, G13, Saturnin, SKINNY, and GIFT provide the minimum Toffoli-
depth.

5 Conclusions

This paper presents a new framework to construct quantum circuits of S-boxes according to a
limited number of qubits. To construct such circuits, we analyzed the dimensions and bases
before and after the Toffoli layer to find qubit values for which the equations match based
on the meet-in-the-middle strategy. We employed the proposed tool to find the circuits of 4-
bit S-boxes to verify its effectiveness in practice. Through the framework, we discovered all
quantum circuits of odd permutations among all 4-bit optimal S-boxes classified by Leander
and Poschmann. We also implemented quantum circuits of S-boxes for several well-known block
ciphers, finding a more efficient quantum circuit of Saturnin’s S-box. The proposed technique
can be used to find circuits for S-boxes larger than 4 bits, which is left for future work. We
believe that this technique contributes to the research field of finding the optimized quantum
circuits of S-boxes.
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