
Optimized Kyber implementation
on 16-bit MSP430 Microcontroller

DongHyun Shin, Youngbeom Kim, and Seog Chung Seo∗

Department of Financial Information Security,
Kookmin University, South Korea

{dkldkl13, darania, scseo∗}@kookmin.ac.kr

Abstract

Post-Quantum Cryptography (PQC) typically requires more memory and computational
power compared to conventional public-key cryptography. In anticipation of future PQC
migration, active optimization research is being conducted on various devices. However,
no implementation attempts have yet been made in embedded environments with extreme
memory and performance constraints. Notably, no efforts have been made to achieve quan-
tum security in MSP430 environments, which are extensively used in Internet of Things
(IoT) environment. Therefore, this paper presents, for the first time, a strategy for op-
timized implementation of Kyber in an MSP430 environment. We suggest an efficient
NTT-based polynomial multiplication strategy through optimization of Montgomery and
Barrett arithmetic using implicit shifts, and NTT merging techniques redesigned for the
MSP430 environment. Furthermore, by leveraging the characteristics of MSP430’s hard-
ware multiplier and efficient register scheduling, we push the performance of Kyber to its
limits. As a result, compared to the C code of PQCLEAN [1], we achieved performance
improvements of 113.2%, 85.2%, and 131.8% in NTT, basemul, and NTT−1, respectively.
Moreover, In comparison to the Kyber implementation of PQCLEAN [1], our work results
in performance improvements of 12.0% (and 15.7%, 15.1% respectively), 14.8% (and 18.3%,
17.2% respectively), and 24.3% (and 27.4%, 24.4% respectively) for the Keygen, Encaps,
and Decaps operations of Kyber at security levels 1, 3, and 5 respectively.

Keywords: Crystals-Kyber, 16-bit MSP430 Microcontroller, optimize implementation, lattice-
based cryptography, NTT

1 Introduction
With the advent of Shor’s algorithm [2] and the development of quantum computers, con-
ventional public-key systems based on discrete logarithms or factorization are under threat.
Therefore, efforts are being made worldwide to build public key systems that are secure in a
quantum computing environment. Since the NIST PQC (Post-Quantum Cryptography) com-
petition was held in 2016, various optimization studies have been conducted on proposed al-
gorithms, contributing to the performance evaluation of the competition. The first criteria of
NIST’s performance evaluation are speed and memory usage in Software (SW), and area and
power consumption in Hardware (HW). The devices designated for SW performance evaluation
by NIST are ARM-Cortex-M4, CPU, AVX2, and Artix-7 for hardware. The second evalua-
tion item is countermeasures against side-channel attacks. NIST required all submitters to
implement constant-time, and evaluations were conducted on the submitted algorithms from

The 7th International Conference on Mobile Internet Security (MobiSec’23), December 19-21, 2023, Okinawa, Japan, Article No. 10
∗Corresponding author: Department of Financial Information Security, Kookmin University, Seoul, 02707,

Republic of Korea

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

Algorithm 1 Kyber.CPAPKE Keygen [7, 8]

Ensure: pk = (b̂, ρ), sk = ŝ
0: seed← {0, · · · , 255}32
0: ρ, σ ←SHAKE256(64, seed)
0: Â← GenMatrixA(ρ)
0: s ← SampleVec(σ, 0)
0: e ← SampleVec(σ, 1)
0: b̂← Â ◦ NTT(s) + NTT(e)
0: return pk = (b̂, ρ), sk = ŝ =0

a side-channel analysis perspective. Lastly, the applicability of PQC is considered. The ease
of migration to various commercial protocols (such as TLS/SSL, DNSSEC, IPSEC, etc.) [3, 4]
is an important issue for future cryptographic systems. In the early stages of the NIST PQC
competition, there was high interest in the speed of PQC. However, as algorithms with better
performance than the existing elliptic curve-based cryptographic systems have emerged through
various optimization studies, current research is primarily conducted on optimization of PQC’s
memory usage. The main platform for optimization research is the ARM-Cortex M4, which is
a performance evaluation target device of NIST [5]. There exists research that benchmarks the
algorithms submitted to the PQC competition in the ARM-Cortex M4 environment, and the
latest research is continuously being updated in the respective library.

Currently, NIST has adopted four types of PQC algorithms as standardization targets.
As Kyber [6] is the only KEM algorithm based on a lattice, additional KEM algorithms are
being selected during Round 4. To achieve quantum security, a migration process from existing
public-key algorithms to standardization-target PQC is necessary. An important point during
migration is that all devices and services must undergo migration. If any side continues to use
the existing public key system, PQC communication is not possible between them, and they
could be vulnerable to downgrade attacks in the future. Therefore, all devices using public key
encryption need to migrate to PQC. Although various PQCs have been proven to be safe in
quantum environments, they have the disadvantage of longer key lengths or more computational
load compared to conventional public keys. Therefore, PQC optimization research is necessary
in the Micro Control Unit (MCU), which has resource and performance constraints compared
to CPUs. Currently, despite being the only NIST PQC PKE/KEM standardization target
algorithm, there are no implementation results for Kyber in the MSP430 environment.

In this paper, we present the first implementation of NTT and Keccak, which account for
the largest proportion of Kyber’s operations in the MSP430 environment, propose optimized
implementation methods, and compare performance. As a result, compared to the C code of
PQCLEAN [1], we achieved performance improvements of 113.2%, 85.2%, and 131.8% in NTT,
basemul, and NTT−1, respectively. Moreover, In comparison to the Kyber implementation of
PQCLEAN [1], our work results in performance improvements of 22.3% (and 24.1%, 22.3%
respectively), 25.2% (and 27.4% 25.2% respectively), and 31.9% (and 34.1%, 31.9% respec-
tively) for the Keygen, Encaps, and Decaps operations of Kyber at security levels 1, 3, and 5
respectively.

2

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

Algorithm 2 Kyber.CPAPKE Enc [7, 8]

Require: pk = (b̂, ρ), message µ in Rq, seed coin ∈ {0, · · · , 255}32
Ensure: Ciphertext (u′, h)
0: Â← GenMatrixA(ρ)
0: s′ ← SampleVec(coin, 0)
0: e′ ← SampleVec(coin, 1)
0: e′′ ← SampleVec(coin, 2)
0: t̂← NTT(s′)
0: u← NTT−1(Â ◦ t̂) + e′

0: v̂← NTT−1(v̂T ◦ t̂) + e′′ + µ
0: return (u′ = Compress(u), h = Compress(v′)) =0

Algorithm 3 Kyber.CPAPKE Dec [7, 8]

Require: Ciphertext c = (u′, h), secret key sk = ŝ
Ensure: Message µ ∈ Rq

0: u← Decompress(u′)
0: v′ ← Decompress(h)
0: return µ = v′−NTT−1(ŝT ◦ NTT(u)) =0

2 Background of Kyber

2.1 Crystals-Kyber

Kyber is a Module-LWE-based Post-Quantum Cryptographic (PQC) algorithm for Public Key
Encryption (PKE) and Key Encapsulation Mechanism (KEM). Kyber constructs a KEM using
the Fujisaki-Okamoto transformation of the PKE scheme that achieves IND-CPA security and
attains IND-CCA2 security. Kyber has a total of 3 parameters, denoted as 1, 3, and 5 according
to NIST security levels [Table 1]. Here, n represents the degree of polynomials, k represents
the degree in the public square matrix, and q is the coefficient range of the polynomials. η1
and η2 are used as ranges for introducing random error values during encryption. (du, dv) is a
value utilized in the Compress and Decompress processes. δ represents the decryption failure
probability for the parameter set. [Algorithm 1, 2, 3] provide pseudocode for Kyber’s PKE
scheme.

Table 1: Kyber Parameter sets

parameter level n k q η1 η2 (du,dv) δ

Kyber512 1 256 2 3329 3 2 (10, 4) 2^-139
Kyber768 3 256 3 3329 2 2 (10, 4) 2^-164
Kyber1024 5 256 4 3329 2 2 (11, 5) 2^-174

2.2 NTT-based Polynomial Multiplication

Since a naive polynomial multiplication requires O(n2) complexity where n is the degree of
a polynomial, Kyber makes use of the number-theoretic transform (NTT)-based polynomial
multiplication providing O(n log n) complexity. For Kyber’s prime q = 3329 and n = 256, the

3

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

base field Zq contains not primitive 512-th roots but primitive 256-th roots of unity. Thus, Kyber
uses incomplete negacyclic NTT method. In other words, a polynomial over Rq is expressed by
a vector of 128 polynomials of degree 1 in NTT domain. NTT-based polynomial multiplication
consists of three steps: NTT conversion, point-wise multiplication, and inverse NTT conversion.
In other words, the multiplication of two polynomials f =

∑255
i=0 fiX

i and g =
∑255

i=0 giX
i in Rq

is conducted as three steps.

• Converting each polynomial into NTT domain:
f̂ ← NTT(f) and ĝ ← NTT(g), where NTT(f) = (f̂0 + f̂1X, . . . , ˆf254 + ˆf255X),
with f̂2i =

∑127
j=0 f2jζ

(2i+1)j and ˆf2i+1 =
∑127

j=0 f2j+1ζ
(2i+1)j .

ζ is the 256-th root of unity, and ζ(2i+1)j values are precomputed.

• Conducting point-wise multiplication:
ĥ = f̂ ◦ ĝ where ĥ2i + ˆh2i+1X = (f̂2i + ˆf2i+1X)(ĝ2i + ˆg2i+1X) mod (X2 − ζ2i+1),
for i = {0, . . . , 127}.

• Applying inverse NTT conversion:
f · g = NTT−1(ĥ)

For NTT conversion and inverse NTT conversion, typically Cooley–Tukey (CT) method [9]
and Gentleman-Sande (GS) method [10] are used, respectively.

2.3 16-bit MSP430 Microcontroller
MSP430 is a low-power MCU family developed by Texas Instruments. This MCU is designed for
low-power application programs. The MSP430 series delivers high performance with minimal
power consumption, facilitating efficient embedded system design. The MSP430 series finds
applications in a wide range of fields, including compact household appliances, medical devices,
industrial control systems, and sensor networks, offering efficient low-power operation and a
diverse set of functionalities.

Table 2: Main Instruction Set of MSP430

Instruction Operand Definition
adc(.b) dst dst + carry ->dst
add(.b) src, dst src + dst → dst
sub(.b) src, dst dst + .not.src + 1 ->dst
subc(.b) src, dst dst + .not.src + carry ->dst
mov(.b) src, dst src ->dst
rla(.b) dst Rotate left arithmetically
rlc(.b) dst Rotate left through carry
xor(.b) src, dst src .xor. dst ->dst

2.3.1 Characteristics of MSP430

MSP430 is a 16-bit MCU, featuring a total of 12 general-purpose registers, designated R4 to
R15. Each of these registers is 16 bits in size. A notable characteristic of the MSP430 is that
most models incorporate a hardware multiplier. This hardware multiplier consists of a 16×16-
bit multiplication unit, and in some cases, a 32×32-bit-bit unit is also available. In the context

4

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

of the Kyber algorithm, where polynomial coefficients lie in the range [0, q), a 16-bit data
type is employed for implementation. As a result, we exclusively utilize the 16×16-bit hardware
multiplier for our purposes.

The 16×16-bit hardware multiplier in the MSP430 is equipped with dedicated registers:
MPYS, MACS, OP2, RESLO, and RESHI. These registers are exclusively reserved for the
operations of the multiplier, making them independent from the general-purpose registers. While
it is possible to use the instructions employed for general-purpose registers, it comes with a
higher cost. Therefore, it is more efficient to utilize these registers solely for multiplication
operations. By moving values into the MPYS and OP2 registers, the multiplier begins the
operation and stores the result in the RESLO and RESHI registers. Additionally, using the
MACS register instead of the MPYS register accumulates the newly computed value with the
existing value stored in the RESLO and RESHI registers, resulting in an accumulation of the
product. We have leveraged these architectural features and the hardware multiplier efficiently
to optimize the Kyber algorithm. [Table 2] presents commonly used instructions in the MSP430.
Appending .b to the instructions operates on the lower byte.

3 Proposed Kyber Optimization on 16-bit MSP430 Micro-
controller

In this section, we present the several implementation strategies for optimizing the performance
of Kyber. Our proposed implementations cover major operation NTT-based polynomial multi-
plication, which mainly take up the overall running-time of Kyber. Thus, they can contribute
to significant speed-up.

3.1 Faster Implementation of Reduction Algorithms in Kyber Oper-
ations

3.1.1 Faster Implementation of Barrett reduction

Barrett reduction [11] involves selecting a Barrett constant in the form of a power of 2 and
efficiently reducing within the Q range through shift operations. In the case of PQCLEAN’s
Barrett reduction, the Barrett constant is chosen as 226, resulting in a reduction to the range
[- q−1

2 , q−1
2]. Ultimately, during the packing process, when coefficients are negative, Q is added

to align the range to (q, q).
When changing the Barrett constant to 216, the subtraction range becomes (−q, q). Similar

to the case of choosing 226 as the Barrett constant, by adding Q only to negative coefficients
during the packing process, the poly_reduce function can be used. As a result, we have imple-
mented the Barrett reduction with the Barrett constant changed to 216 to provide advantages
in a 16-bit environment. By selecting the Barrett constant as 216 in a 16-bit environment, shift
operations can be omitted. Instead of shifting the multiplication result, utilizing the register
corresponding to the upper 16 bits (RESHI) directly avoids the need for shift operations. [Al-
gorithm 5] presents the Faster Barrett reduction code written in assembly language. When
choosing the Barrett constant as 216, the precomputed value of v is calculated as ((1<<16)
+ q/2) / q. To multiply v and a using the hardware multiplier, values need to be moved into
the MPYS and OP2 registers. The 32-bit result of multiplication is stored in the RESLO and
RESHI registers. After multiplication, when multiplying the upper word of the multiplication
result with q, the upper word value is directly used from the RESHI register without shift op-

5

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

erations. Therefore, to leverage the advantages of a 16-bit environment, we have implemented
the Barrett reduction by changing the Barrett constant to 216.

Algorithm 4 C code for barrett reduction

Require: 16-bit a , with a ∈ [−215, 215),
Ensure: 16-bit a , with a ∈ (− q

2 ,
q
2)

0: int16_t;
0: int16_t v = ((1 « 26) + q/2)/q);
0: t = ((int 32_t)v ∗ a + (1 « 25)) » 26;
0: t ∗= q;
0: return a - t; =0

Algorithm 5 Assembly code for Faster barrett reduction

Require: 16-bit a , with a ∈ [−215, 215),
Ensure: 16-bit a , with a ∈ (−q, q)
0: mov a, &MPYS
0: mov #20, &OP2 {t = v ∗ a, t is a 16-bit data type}
0: mov &RESHI, &MPYS
0: mov q, &OP2 {t = t ∗ q}
0: sub &RESLO, a {a = a - t}
0: return a =0

3.1.2 Faster Implementation of Montgomery reduction

PQCLEAN’s Montgomery reduction [12] employs a Montgomery constant selected as 216 for
subtraction within the range of (−Q, Q). Similar to the previously mentioned Faster Barrett
reduction, it omits the 16-bit shift operations. When the upper 16 bits or lower 16 bits of the 32-
bit multiplication result are needed, the corresponding registers are used directly to reduce the
number of instructions. [Algorithm 7] presents the Faster Montgomery reduction code written
in assembly language.

Algorithm 6 C code for Montgomery reduction

Require: 32-bit a , with a ∈ [−q · 215, q · 215),
Ensure: 16-bit t , with t ∈ (−q, q)
0: int16_t;
0: t = (int16_t)a ∗ QINV;
0: t = (a - (int32_t)t ∗ q) » 16;
0: return t; =0

6

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

Figure 1: The picture on the left is 2-layer merging, and the picture on the right is a single-layer
implementation.

a128a255

a64

a255

a255 a128 a64
−+

store

a192 a64

a192

−+

x zeta

− −

a255 a192 a128 a64

a255 a192 a128
++

load

x zeta

x zeta x zeta

a255

−+

x zeta

loada128

store

Algorithm 7 Assembly code for Faster Montgomery reduction

Require: 32-bit a = a1||a0, with a ∈ [−q · 215, q · 215),
Ensure: 16-bit a1 , with a1 ∈ (−q, q)
0: mov a0, &MPYS
0: mov QINV, &OP2 {t = QINV ∗ a, t is a 16-bit data type}
0: mov &RESLO, &MPYS
0: mov q, &OP2 {(int32_t)t = t ∗ q}
0: sub &RESLO, a0
0: subc &RESHI, a1 {t = a - (int32_t)t}
0: return a1 {return t(=a1)} =0

3.2 Optimized Merging Strategy in NTT

In Kyber, the NTT process is divided into a total of 7 layers of CT-butterfly operations, which
further splits a single 255-degree polynomial into 128 linear polynomials. As Kyber employs
Q = 3329, most implementations store polynomial coefficients in 16-bit data types. However,
embedded environments like AVR and ARM have limited register sizes and quantities, making
it impractical to store all coefficients in registers. Consequently, a common implementation
approach involves loading two coefficients per register, performing CT-butterfly operations,
and then storing the results. In other words, this approach calculates the NTT layer by layer,
necessitating coefficient loading for all coefficients with each execution of a single layer.

In order to efficiently organize the NTT, the roles of the four primary registers should be
fixed as follows: one register for array addressing, two registers for 32-bit multiplication results
used for Montgomery reduction and CT-butterfly operations, and one register for loop control.

Similar to other environments, the MSP430 also provides only 12 available registers. Conse-
quently, it’s not possible to store all coefficients in registers during NTT implementation. Thus,
the conventional approach involves loading coefficients for each layer. To minimize the instruc-

7

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

Figure 2: Register scheduling for NTT

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

loop counter

mul resultptrPolynomial coefficients

constant values
such as 𝑞, QINV and zetas

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

loop counter

mul resultptrPolynomial coefficients

(a) 2-layer merging for NTT

(b) 3-layer merging for NTT

tion count for load and store operations in NTT, we adapted and implemented the widely-used
merging technique for the MSP430 environment. The merging technique optimizes load and
store instructions by efficiently utilizing registers. [Figure 1] illustrates the overall structure
of the m2-layer merged NTT and single-layer NTT. This technique was initially proposed by
Abdulrahman et al. [5].

The aforementioned merging technique involves loading a coherent set of 2n coefficients into
registers, performing n-layer CT-butterfly calculations simultaneously, and then storing the
results. In essence, it reduces the number of load and store instructions compared to computing
a single layer of NTT separately. Furthermore, by applying 2-layer merging, it leaves 4 registers
available. Consequently, constants such as KYBER_Q, QNIV, and zetas, which are repetitively
used, can be stored in registers. Performing NTT calculations with these constants fixed in
registers results in fewer clock cycles compared to using immediate instructions. However, with
3-layer merging, all 8 available coefficients are loaded, leaving no registers available. Therefore,
as the NTT layers progress, since zeta values frequently change, employing 2-layer merging
or calculating a single layer first is more efficient than 3-layer merging. Additionally, 4-layer
merging requires 16 registers, making it inefficient for the MSP430 environment. The proposed
register scheduling is illustrated in [Figure 2].

Kyber’s NTT is composed of a total of 7 layers. Therefore, we can consider 2-2-2-1 merging,
2-2-3 merging, and 1-3-3 merging. Firstly, 2-2-3 merging introduces more immediate instructions
compared to 2-2-2-1 merging, leading to additional clock cycles. However, due to fewer load
and store operations for polynomial coefficients, the overall number of clock cycles is reduced.
Both 2-2-3 merging and 1-3-3 merging involve the same number of load and store operations
for polynomial coefficients. However, 1-3-3 merging incurs higher costs in terms of replacing
constants compared to 2-2-3 merging.

Therefore, in the MSP430 environment, we have determined that the 2-2-3 merging tech-
nique yields optimal results. While NTT employs CT-butterfly operations, the Inverse NTT
employs GS-butterfly operations. However, since the logic performed at each layer is similar to
that of NTT, we have applied the 2-2-3 merging technique to NTT−1 as well.

8

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

3.3 Optimizing Point-wise Multiplication with Karatsuba Multiplica-
tion

In Kyber, two polynomials that have undergone NTT operations must perform point-wise mul-
tiplication. Since Kyber performs up to 7 layers, the point-wise multiplication process involves
a total of 128 multiplications between first-order polynomials. PQCLEAN implements the mul-
tiplication of first-order polynomials in a schoolbook form. Excluding the process of multiplying
ζ for mapping to ring elements, a schoolbook multiplication of first-order polynomials requires
four multiplications. We aim to fully exploit the feature of MSP430 that supports hardware
multiplication. However, to benefit from the hardware multiplier, values must be moved to the
MPYS or OP2 registers of the multiplier. Furthermore, to use the result of the multiplication,
it must be moved from the RESLO or RESHI registers to a general register. Thus, the multi-
plication operation incurs a greater load than the ADD or SUB commands. Therefore, as an
optimization strategy, we choose to transform schoolbook-style multiplication into Karatsuba
method [13], reducing the number of multiplications and increasing the number of additions
and subtractions.

In point-wise multiplication, public matrix (a1X+a0) ∈ Â and the secret vector (s1X+ s0)
∈ s is calculated in the form as follows:

(a1X + a0) · (s1X + s0)

When implemented with schoolbook multiplication, a total of 4 multiplications and 1 addi-
tion are required, as shown below.

a1s1X
2 + (a1s0 + a0s1)X + a0s0

We implemented the multiplication between first-order polynomials by transforming it into
the well-known Karatsuba multiplication form. It can be calculated with three multiplications,
two additions, and two subtractions, as shown below. Although the number of additions and
subtractions has increased by three in total, the reduction of one 16-bit multiplication results
in a net gain in the overall cycle.

a1s1X
2 + ((a1 + a0) · (s1 + s0)− a1s1 − a0s0)X + a0s0

4 Evaluation

4.1 Benchmarking Setup
We choose the IAR EW simulator for performance measurement in the MSP430 environment.
The target device is the MSP430F67791. We utilized the IAR EW compiler, with the optimiza-
tion level set to high(speed). Our performance measurement comparison is with the code from
PQCLEAN. Regrettably, PQCLEAN [1] does not offer code for the MSP430 environment, so we
compare it to code using pure C. The comparison code was also compiled with the high(speed)
option.

4.2 Result of NTT-based Operation
[Table 3] showcases the performance improvement rates for the core operations of Kyber that
we optimized in this paper. The comparison group is the PQCLEAN [1]. Firstly, through the
optimization methods proposed in this paper, we achieve performance improvement of 46.0%

9

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

Table 3: Cycle counts for NTT, NTT−1, and point-wise multiplication (basemul) of Kyber
and montgomery reduction, and barrett reduction on 16-bit MSP430 environment (basemul
measured by single point-wise multiplication). 1,000 cc is denoted by k.

Implementation language NTT basemul NTT−1

Our work asm 38k 216 66k
(+113.2%) (+85.2%) (+131.8%)

PQCLEAN [1] C 81k 400 153k
(-) (-) (-)

Implementation language Montgomery Barrett

Our work asm 50 41
(+46.0%) (+31.7%)

PQCLEAN [1] C 73 54
(-) (-)

and 31.7% for Montgomery and Barrett reductions respectively. This is attributed to the use
of a hardware accelerator via efficient register scheduling and the modification of arithmetic
operations to allow implicit shifts. Building upon this and the merging techniques, NTT and
NTT−1 achieve a notable performance improvement rate of 113.2% and 131.8% respectively.
Additionally, our basemul implementation, which utilizes the Karatsuba multiplication method,
also achieve a performance enhancement of 85.2%.

Table 4: Cycle counts (cc) for Keygen, EnCaps, and Decaps of all security level of Kyber on
16-bit MSP430. 1,000 cc is denoted by k.

Implementation variant PQCLEAN [1] Our work

Kyber512

KeyGen 3,288k (+12.0%) 2,936k
Encaps 4,419k (+14.8%) 3,849k
Decaps 4,316k (+24.3%) 3,471k

Kyber768

KeyGen 5,546k (+15.7%) 4,793k
Encaps 7,289k (+18.3%) 6,163k
Decaps 7,138k (+27.4%) 5,603k

Kyber1024

KeyGen 8,727k (+15.1%) 7,585k
Encaps 10,892k (+17.2%) 9,297k
Decaps 10,668k (+24.4%) 8,575k

4.3 Result of Kyber.KEM
[Table 4] shows the performance of the entire process of Kyber KEM. In comparison to the
Kyber implementation of PQCLEAN [1], our work results in performance improvements of
12.0% (and 15.7%, 15.1% respectively), 14.8% (and 18.3%, 17.2% respectively), and 24.3%
(and 27.4%, 24.4% respectively) for the Keygen, Encaps, and Decaps operations of Kyber at
security levels 1, 3, and 5 respectively.

10

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

5 Conclusion and Future Work

We present the first implementation of Kyber on a 16-bit MSP430 environment. Our research
primarily focused on polynomial multiplication. Initially, we implemented efficient reduction by
leveraging the architectural characteristics of the 16-bit environment. In addition, we redesigned
the NTT Merging technique, which minimizes memory access, to fit the MSP430 architecture
through efficient register scheduling. We accelerated the process by transforming the conven-
tional Schoolbook-based Point-wise Multiplication to a Karatsuba-based approach and utilizing
a hardware multiplier. In the future, we plan to conduct optimization research on Dilithium,
a Digital Signature Algorithm (DSA) which is part of the NIST standardization target and
belongs to the same family as Kyber, in the 16-bit MSP430 environment.

5.0.1 Acknowledge

This work was partly supported by the Institute of Information and communications Technology
Planning and Evaluation (IITP) Grant by the Korean Government through Ministry of Science
and ICT (MSIT) (A study on PQC optimization and security protocol migration to neutralize
advanced quantum attacks in Beyond 5G-based next-generation IoT computing environments,
50%) under Grant 2022-00207416, and partly supported by the National Research Foundataion
of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1C1C1013368, 50%)

References
[1] Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Improving software

quality in cryptography standardization projects. In 2022 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 19–30, 2022.

[2] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

[3] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake sig-
natures. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1461–1480, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[4] Seungyeon Bae, Yousung Chang, Hyeongjin Park, Minseo Kim, and Youngjoo Shin. A performance
evaluation of ipsec with post-quantum cryptography. In International Conference on Information
Security and Cryptology, pages 249–266. Springer, 2022.

[5] Amin Abdulrahman, Vincent Hwang, Matthias J Kannwischer, and Amber Sprenkels. Faster kyber
and dilithium on the cortex-m4. In Applied Cryptography and Network Security: 20th International
Conference, ACNS 2022, Rome, Italy, June 20–23, 2022, Proceedings, pages 853–871. Springer,
2022.

[6] Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh, and Mehran Mozaffari-
Kermani. Kyber on arm64: Compact implementations of kyber on 64-bit arm cortex-a processors.
In International Conference on Security and Privacy in Communication Systems, pages 424–440.
Springer, 2021.

[7] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber algorithm
specifications and supporting documentation. NIST PQC Round, 2(4):1–43, 2019.

[8] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray CC Cheung, Çetin Kaya Koç, and
Donglong Chen. Improved plantard arithmetic for lattice-based cryptography. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2022(4):614–636, 2022.

11

Optimized Kyber implementation on 16-bit MSP430 Microcontroller Shin, Kim, and Chung

[9] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

[10] W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun and profit. In Proceedings
of the November 7-10, 1966, fall joint computer conference, pages 563–578, 1966.

[11] Paul Barrett. Implementing the rivest shamir and adleman public key encryption algorithm on
a standard digital signal processor. In Advances in Cryptology—CRYPTO’86: Proceedings, pages
311–323. Springer, 1986.

[12] Peter L Montgomery. Modular multiplication without trial division. Mathematics of computation,
44(170):519–521, 1985.

[13] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by
automatic computers. In Doklady Akademii Nauk, volume 145, pages 293–294. Russian Academy
of Sciences, 1962.

12

	Introduction
	Background of Kyber
	Crystals-Kyber
	NTT-based Polynomial Multiplication
	16-bit MSP430 Microcontroller
	Characteristics of MSP430

	Proposed Kyber Optimization on 16-bit MSP430 Microcontroller
	Faster Implementation of Reduction Algorithms in Kyber Operations
	Faster Implementation of Barrett reduction
	Faster Implementation of Montgomery reduction

	Optimized Merging Strategy in NTT
	Optimizing Point-wise Multiplication with Karatsuba Multiplication

	Evaluation
	Benchmarking Setup
	Result of NTT-based Operation
	Result of Kyber.KEM

	Conclusion and Future Work
	Acknowledge

