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Abstract

Compared to Elliptic Curve Cryptography, Post-Quantum Cryptography generally de-
mands lower performance and higher memory resources. Recently, there has been active
research on neon-based parallel implementations for the 64-bit ARMv8-based Cortex-A se-
ries. However, investigation into implementing Post-Quantum Cryptography on the widely
used ARMv7-based Cortex-A series, which is prevalent in the industry, has been lacking.
Therefore, in this paper, we present the first optimized implementation of Crystals-Kyber,
a key encapsulation mechanism standard selected by NIST, specifically tailored for the
32-bit ARMv7-based Cortex-A series environment. We finely tune the widely used signed
Montgomery multiplication and Barrett multiplication in order to take full advantage of
ARMv7’s NEON capability. Specifically, we propose modifications to the internal pa-
rameters and propose changes to operations of Montgomery and Barrett arithmetic in
order to preserve the parallelism logic. Additionally, to accelerate NTT-based polynomial
multiplication, we present a merging technique tailored for the NEON engine of ARMv7.
Finally, in comparison with the vectorized Reference code, our proposed approach real-
izes performance enhancements of 62%, 50%, and 56% for NTT, Point multiplication, and
NTT−1, respectively. Within the Kyber scheme, benchmarked on Kyber768, we achieve
performance improvements of 50%, 43%, and 52% for the KeyGen, EnCapsulation, and
DeCapsulation processes, respectively.
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1 Introduction

The development of quantum computers is threatening the security of currently used public-key
cryptosystems such as RSA, DSA, and ECC. Since 2016, the National Institute of Standards
and Technology (NIST) has begun a competition for standardization of post-quantum cryptog-
raphy (PQC) and four algorithms (Crystals-Kyber [1], Crystals-Dilithium [2], Falcon [3], and
SPHINCS+ [4]) were selected last year. Among four algorithms, Crystals-Kyber (Kyber) is the
only Key Encapsulation Mechanism (KEM) for key establishment, while other algorithms are
digital signature schemes.

The security of Kyber is based on Module-LWE (Learning with Error) problem and its main
computations are polynomial multiplication over Ring Rq = Zq[X]/(Xn + 1) and rejection-
based error sampling process. Since key establishment is one of the most important objectives
of public-key schemes and Kyber is the sole KEM algorithm selected by NIST, some researches
on optimizing Kyber on several devices have been actively conducted. Until now, Kyber and
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Dilithium has been optimized on x86-64-bit CPUs with AVX2 instructions [5], 32-bit Cortex-
M0/M3/M4 [6, 7, 8], and 64-bit ARMv8 [9, 10] with NEON instructions.

There are two main concerns regarding optimization: performance optimization and mem-
ory usage optimization. In case of devices having sufficient memory, such as 64-bit ARMv8
MCUs and x86-64 CPUs, performance optimization is the most important objective. On the
other hand, memory-constrained devices like 32-bit Cortex-M0/M3/M4, not only performance
but also memory optimization is also an important factor. Regarding computation efficiency,
the main target is to optimize the polynomial multiplication. Kyber specification makes use
of number-theoretic transform (NTT)-based method for efficient polynomial multiplication and
NTT-based polynomial multiplication consists of three steps: NTT conversion, point-wise mul-
tiplication, and inverse NTT (NTT−1) conversion. The main computations of these three steps
are modular multiplication and modular addition/subtraction over Zq, for q = 3329. For ef-
ficient constant-time modular reduction, Montgomery method and Barrett method have been
widely used. In 2018, Seiler’s work has shown that signed Montgomery method and signed
Barrett method are superior to their unsigned versions [5] in the context of NTT-based poly-
nomial multiplication. From the proposal of signed reduction methods, NTT-based polynomial
multiplication using them has been actively optimized on aforementioned devices from 32-bit
Cortex-M0/M3/M4 [6, 7, 8] to x84-64-bit CPUs [5] and 64-bit ARMv8 MCUs [9]. Regard-
ing memory usage efficiency, some streaming approaches have been applied to PQM4 projects.
However, until now, there is no Kyber optimization research on 32-bit ARMv7-based Cortex-A
series, which are widely used for IoT devices.

Motivation: The 32-bit ARMv7-based Cortex A series has prominently found its place in
a wide range of IoT applications, from automotive systems and home appliances to medical
devices. As Kyber has been earmarked for standardization by NIST, it is necessary to inte-
grate Kyber into the ARMv7-based Cortex-A environments becomes increasingly inevitable.
In light of quantum threats, particularly Shor’s algorithm, it’s paramount to maintain secure
communication across these devices, underscoring the importance of dedicated implementation
optimization studies. While there have been efforts to optimize Kyber on the ARMv8-based
Cortex-A series, the distinctions in their instruction sets, register counts, and sizes call for
needing unique implementation strategies in ARMv7-based Cortex A series. Therefore, in this
paper, our focus narrows down to pinpointing and discussing these optimization techniques for
Kyber implementation. Our research contributions can be summarized as:

Contribution: In this paper, we present the first implementation of Kyber on the ARMv7-
based Cortex-A series. Initially, we survey existing arithmetic, subsequently opting for those
most amenable to parallel implementation within the ARMv7 environment, namely Mont-
gomery multiplication and Barrett reduction. To facilitate vectorized arithmetic, we recalibrate
the parameter sets and adapt each arithmetic operation in alignment with the NEON instruc-
tion set. Furthermore, in the context of NTT-based multiplication, we introduce a merging
strategy tailored for the ARMv7-based Cortex-A series. Ultimately, in comparison with the
vectorized Reference code, our proposed approach realizes performance enhancements of 62%,
50%, and 56% for NTT, Point multiplication, and NTT−1, respectively. Within the Kyber
scheme, benchmarked on Kyber768, we achieve performance improvements of 50%, 43%, and
52% for the KeyGen, EnCapsulation, and DeCapsulation processes, respectively.

Paper Organization: This paper is structured as follows. Section 2 goes through the pre-
liminaries, Section 3 describes our insights on modular multiplications using NEON extension of
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ARMv7-based Cortex A series, and Section 4 shows the performance numbers of NTT/NTT−1

and the overall impact on Kyber. Finally, Section 5 we conclude this paper.

2 Preliminaries

2.1 Crystals-Kyber

Crystals-Kyber (Kyber) is the only KEM algorithm selected by NIST and its security is based
on Module Learning With Error (Module-LWE) problem. Since characteristic of Module-LWE-
based kyber, each element in a matrix and a vector is a polynomial over Ring Rq = Zq[X]/(Xn+
1) where n = 256 and q = 3329. The public matrix of Kyber exhibits a size of ℓ × ℓ, while
the secret vector and noise each possess a size of ℓ × 1. For security levels 1, 3, and 5, the
corresponding values of ℓ are 2, 3, and 4, respectively. Kyber’s Public Key Encryption (PKE)
consists of three operations: Key generation, Encryption, and Decryption, and Kyber-KEM
utilizes Kyber-PKE with Fujisaki-Okamoto transform for providing IND-CCA2 security. For
the complete pseudocode structure of Kyber PKE/KEM, please refer to Algorithm 4, 5, and 6
for PKE, and Algorithm 7, 8, and 9 for KEM in Appendix A and B.

Except for the random sampling based on hash function, the core operation of each Kyber-
PKE algorithm is either matrix by vector multiplication (A◦s) or vector by vector multiplication
(ŝT ◦ u). For example, multiplication with an ℓ× ℓ matrix and a ℓ× 1 vector requires ℓ2 poly-
nomial multiplications (vector by vector multiplication requires ℓ polynomial multiplications).
In the algorithm description, bold upper-case letters (e.g., A) and bold lower-case letters (e.g.,
s) denote matrices and vectors, respectively.

In the framework of Kyber, GenMatrixA generates a public matrix Â, size of ℓ × ℓ. The
result of this process hinges on the input of a 32-bit parameter known as ρ, which leads to
the formation of Rq elements via two established methods: SHAKE and Rejection-sampling.
Considering the fact that sampling is performed randomly within the Rq, it can be stated that

the public matrix A is derived from the NTT domain. Hence, it is depicted as Â, eliminating
the necessity for explicit NTT. Simultaneously, SampleVec algorithm plays a pivotal role in
Kyber, tasked with producing a secret vector and its corresponding noise, both sized ℓ × 1.
Kyber leverages the Central Binomial Distribution (CBD) in its sampling process, a decision
based on the system’s predilection for noise and secret vectors that comprise small coefficients.
Compress and Decompress serve as pivotal mechanisms in the efficiency of data transmission
and optimization of network resources. These procedures sequentially execute compression and
restoration on 8-bit data. The details of the Kyber description can be found in the Kyber
specification document [1].

2.2 Number Theoretic Transform (NTT)

Polynomial multiplication typically has a complexity of O(n2) when implemented based on
the schoolbook method, but in lattice-based Schemes (LBS) systems, there is a preference for
multiplication algorithms with lower complexity. The Number Theoretic Transform (NTT)
algorithm is one variation of the Discrete Fourier Transform (DFT) and enables efficient poly-
nomial multiplication in Galois Field. In LBS, NTT can be seen as an evaluation of polynomials
and, generally, in a Zq[X]/(Xn−1), n evaluation values are required to determine a polynomial
with n coefficients. Hence, the primitive n-th root of unity existing in Zq[X] is used to generate
these evaluation values. For Cyclic NTT that employs the factor polynomial Xn − 1, a prim-
itive n-th root of unity (ζn) must exist in Zq to facilitate NTT usage. Meanwhile, Negacyclic

3



Vectorized Implementation of Crystals-Kyber on NEON extension Kim and Seo

× −

+

𝜉

𝑥𝑖

𝑦𝑖

𝑧𝑖

𝑧
𝑖+
𝑛
2

(a) Cooley-Tukey [11]

×−

𝜉

𝑥2𝑖+1

+ 𝑥2𝑖𝑥𝑖

𝑦𝑖

(b) Gentleman-Sande [12]

Figure 1: Butterfly diagrams of FFT/NTT algorithms

NTT, which uses the factor polynomial Xn + 1, necessitates a primitive 2n-th root of unity
(ζ2n). Commonly, the Chinese Remainder Theorem (CRT) and the Fast Fourier Transform
(FFT) algorithm are applied for an efficient NTT implementation, utilizing only O(n log n)
operations.

Through the CRT algorithm, one can generate an isomorphic mapping of Negacyclic NTT
Zq[X]/(Xn− 1)→

∏
i Zq[X]/(X − ζ2i+1

2n ) for i = 1, 2, · · · , n− 1, when iterated log n times, fully
decomposes an n − 1 degree polynomial into n single coefficients. Each iteration is commonly
referred to as an NTT layer, where the result of the j-th layer is the remainder of any polynomial
a f mod (X2j−1±ζ2i+1

2n ) for some i. The polynomial elements of Kyber belong to Zq[X]/(Xn+1)
with q = 3329 and n = 256, and since there is no 512-th root of unity within the modulus 3329,
Kyber employs an incomplete Negacyclic NTT. In other words, an NTT with 7 layers using the
primitive 256-th root of unity ζ = 17 is actually implemented, eventually decomposing into a
first-degree polynomial. Through the NTT, the original polynomial X256 +1 is decomposed as
follows:

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1
2n ) =

127∏
i=0

(X2 − ζ
2br7(i)+1
2n )

In here br7(i) for i ∈ {0, · · · 127} is the bit reversal of the unsigned 7-bit integer i. Finally, in
Kyber, any polynomial f ∈ Rq is represented as follows by the NTT:

f mod (X2 − ζ2br7(0)+1), f mod (X2 − ζ2br7(1)+1), · · · , f mod (X2 − ζ2br7(127)+1)

To compute the NTT layers efficiently, butterfly operations, typically used in FFT, are uti-
lized. Generally, the Cooley-Tukey (CT) butterfly [13] is used in the NTT and the Gentleman-
Sande (GS) butterfly [12] is used in the NTT−1 (Please See Figure 1 for illustrations). Since
the split polynomials are in bit-reverse order, rearrangement is required in the implementation.
However, by using the CT butterfly, one can transition from the normal order to the bit-reverse
order at no additional cost. Similarly, using the GS butterfly in the NTT−1 enables us to
convert the polynomial back to the normal order without incurring any extra cost.

2.3 Modular Arithmetic

Three steps in an NTT-based polynomial multiplication require a number of multiplication over
Zq (Namely, a · b mod q). In other words, in NTT conversion (CT method) and inverse NTT
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conversion (GS method), each coefficient in a polynomial is multiplied with a twiddle factor
ζ over Zq for factoring into smaller polynomials or combining into lager polynomial and in
point-wise multiplication, coefficients of two polynomials of degree 1 are multiplied over Zq. In
Kyber, an element over Zq is expressed with a 16-bit data type. Thus, the result of multiplying
two elements is 32-bit and it needs to be reduced by q. In other words, c mod q = c− ⌊c/q⌋ · q
(c = a · b), where the division operation is typically non-constant-time in modern computers.
Thus, an efficient and constant-time reduction is required to prevent timing-based side-channel
analysis. First, we introduce the previously proposed modular reduction algorithms in lattice-
based cryptography.

As efficient and constant-time reduction algorithms, Montgomery method [14] and Barrett
method [15] have been widely used. In addition, there is also research that has recently ef-
fectively improved Plantard reduction and applied it to Kyber [16]. In the context of LBS
using small prime q, the signed Montgomery method (Algorithm 1) and signed Barrett method
(Algorithm 2) were proposed [5] and have been applied to the implementations of Kyber and
Dilithium. Signed reduction is denoted by mod± q and c mod± q reduces into (− q

2 ,
q
2 ). Ac-

tually, a signed reduction is more efficient than an unsigned reduction in the context of LBS,
because the result of the reduction does not need to be unsigned [5, 6, 17, 7].

Algorithm 1 Signed Montgomery reduction [5]

Input: c = a · b such that c = c1β + c0 and c ∈ (−β
2 q,

β
2 q), where β = 216 if q < 216, the odd

modulus q ∈ (0, β
2 )

Output: r ≡ abβ−1 mod q, r ∈ (−q, q)
1: m = c0 · q−1 mod±β ▷ signed low product, q−1 is a precomputed
2: t1 = ⌊m · q/β⌋ ▷ signed high product, shift right operation
3: r = c1 − t1
4: return r

Signed Montgomery reduction is given by Algorithm 1 and the constant β is typically set to l-
bit word size such that the modulus q fits in one word. It replaces division with multiplication,
shift, and subtraction operations. Note that in the case of subtraction, only the high part
(c1 − t1) of subtraction is required. Since the result r of Algorithm 1 is in the range of (−q, q),
it does not need to be unsigned.

Algorithm 2 Signed Barrett reduction [5]

Input: q with 0 < q < β
2 , 2 ∤ q and a with a ∈ [−β

2 ,
β
2 ), where β = 216

Output: r ≡ a mod q, r ∈ [0, q]

1: v ← ⌊ 2
log(q)−1·β

q ⌋ ▷ precomputed

2: t← ⌊ av
2log(q)−1·β ⌋ ▷ signed high product

3: t← tq mod β ▷ signed low product
4: return r ← a− t

5



Vectorized Implementation of Crystals-Kyber on NEON extension Kim and Seo

Barrett reduction [15] replaces the computation of ⌊c/q⌋ requiring a division with an approx-
imated quotient computation ⌊(c ·λ)/R)⌋ requiring efficient shift operation where λ = ⌊R/q⌋ is
a precomputed constant, with R = 2l. Algorithm 2 is signed Barrett method [5] used by Kyber
reference code and note that the input a can be signed value and the result r is in the range of
0 ≤ r ≤ q.

Algorithm 3 Improved Plantard reduction [8]

Input: c = a · b, where a, b ∈ [−q2α, q2α], q < 2l−α−1, and q′ = q−1mod±22l

Output: r = c(−2−2l) mod±q, where r ∈ (− q
2 ,

q
2 )

1: r = [([[cq′]2l]l + 2α)q]
l

2: return r

The basic idea of Plantard reduction [16] is similar to Montgomery reduction, aiming to
find a value of t such that (tq − ab) is divisible by R = 22l. Ultimately, it should satisfy
(tq − ab)−2l ≡ ab(−2−2l) mod q. Recently, an improved version of Plantard multiplication
was proposed in [8] for Cortex-M4, extending the method to a signed system and expanding
the input range (Algorithm 3). The improved Plantard reduction method provides a range 2α

times larger ([−q222α, q222α]) compared to Montgomery reduction, while maintaining half of the
output range (− q

2 ,
q
2 ). Leveraging Cortex-M4’s smulwb and smlabb instructions, and when one

of the operands is constant, only two multiplications occur during the modular multiplication
process.

In the ARMv8 environment, [9] proposed an advanced approximation, building on the foun-
dational Barrett reduction. Through his research, Becker illustrated a linkage between Barrett
and Montgomery multiplications, conclusively identifying the result as a 32-bit value. This
breakthrough facilitated vectorization when deploying NEON in the ARMv8 context. How-
ever, the efficiency of this method largely hinges on the robust capabilities of the smull and
smull2 instruction, which provide high and low returns of extended multiplication. Regret-
tably, the NEON instruction set available in ARMv7 don’t offer the same latitude as their
ARMv8 counterparts. Considering these limitations, we aim to introduce a method tailored
for Montgomery multiplication and Barrett reduction that aligns with the specifications of the
NEON extension in ARMv7 environment.

3 Vectorized NTT using NEON extension

3.1 NEON extension of ARMv7-based Cortex-A series

The ARMv7 NEON, an advanced SIMD extension for ARM Cortex-A processors, is integral for
enhancing performance in media-intensive tasks and signal processing. It comprises 32 64-bit
registers, which can be paired as 16 128-bit wide units. Supporting diverse integer types and
single-precision floating-point, it is adept for a broad range of operations, from basic arithmetic
to complex element-wise multiplication. Designed for seamless operation alongside the ARMv7-
A main processor, ARMv7 NEON sets a benchmark in versatility, paving the way for subsequent
improvements in later architectures like ARMv8-A.
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However, when compared to the ARMv8-A NEON, ARMv7 lacks advanced multiplication
operations such as polynomial multiplication, complex number multiplication, and rounding
versions of multiply-add/subtract instructions. Therefore, it is imperative to utilize the pro-
vided vector instructions as efficiently as possible. In this section, we will briefly introduce the
instructions that will be leveraged in this paper. vmov.s32 moves a 32-bit scalar to a single lane
of the destination register. vmlal.s16 performs a long multiply accumulate. vuzp.s16 unzips
16-bit elements from the source registers. vmls.s16 multiplies 16-bit elements from the first
source register by 16-bit elements from the second source register and subtracts the product
from the corresponding 16-bit elements in the destination register. vqdmulh.s16 performs a
saturated doubling multiply high half, returning the high half of the 2x product. vmul.s16

multiplies 16-bit elements from the first source register by 16-bit elements from the second
source register and writes the product to the destination register. vhsub.s16 subtracts 16-bit
elements in the second source register from corresponding elements in the first source register,
halves the results.

3.2 Modified Modular reduction

Listing 3 presents a variation of Barrett reduction specifically designed for the Cortex-A series.
The goal is to enhance performance while retaining 8 16-bit coefficients within a 128-bit vector
register. To achieve this, compared to reference approach(cf. Listing 1), we adjust the parameter
of Barrett constant to 16, enabling the utilization of an implicit shift. The finalized assembly
code is provided in Listing 5. The assembly code for Barrett reduction employs six NEON
instructions. Reductions are executed concurrently for eight coefficients. Although adjusting
R = 226 to R = 216 slightly alters the range of the reduction results, it does not materially
impact the overall functioning of Kyber.

Listing 4 shows a modification of Montgomery reduction tailored for the Cortex-A series.
Unlike the ARMv8-based neon engine, the 32-bit neon engine lacks upper word multiplication or
lower word multiplication capabilities (smull and smull2). Instead, it only supports vqdmulh
(vector saturating doubling multiply returning high-half). Therefore, we adapt the Montgomery
reduction formula to leverage this specific instruction. Failing to utilize the vqdmulh instruction
would necessitate an additional instruction for long word multiplication. The assembly code
incorporating the vqdmulh command and vhsub (vector halving subtract) is shown in Listing 6.

Unlike Barrett reduction, Montgomery reduction retains the same parameters and proceeds
with vectorization. In contrast to the reference implementation where multiplication is followed
by reduction, we implement it in a combined manner, that is, as Montgomery multiplication.
This approach boasts the advantage of allowing concurrent multiplication and reduction for
eight coefficients. Given that accumulation result by multiply-long instruction is not required,
it conservatively uses registers. The capability to handle concurrent multiplication for eight
coefficients stems from the transformation of Montgomery multiplication for using vqdmulh

and vhsub instruction (refer to Listing 5 and 6).
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Listing 1: Ref Barrett C code

int16_t barrett_reduce(int16_t a) {

int16_t t

const int16_t v = ((1<< 26) + q/2)/q

t =( int32_t)v*a + (1<< 25) >> 26

t *= q

return a-t}

Listing 2: Ref Montgomery C code

int16_t montgomery_reduce(int32_t a) {

int16_t t

t = (int16_t) a * qinv

t = (a - (int32_t)t * q) >> 16

return t

}

Listing 3: Our Barrett C code

int16_t our_barrett(int16_t a) {

int16_t t

const int16_t v = ((1<< 16) + q/2)/q

t =( int32_t)v*a + (1<< 15) >> 16

t *= q

return a-t}

Listing 4: Our Montgomery C code

int16_t our_montgomery(int32_t a) {

int16_t t

t = (int16_t) a * qinv

t = {(2*a-( int32_t)t*q*2) / 2} >> 16

return t

}

Listing 5: Our Barrett asm code

.macro mc_barrett_reduce

vmov.s32 t, #32768

vmov.s32 t, #32768

vmlal.s16 t, a0, bar

vmlal.s16 v, a1, bar

vuzp.s16 t, v

vmls.s16 r, v, q

.endm

Listing 6: Our Montgomery asm code

.macro mc_mont_mul

vqdmulh.s16 r, a, b

vmul.s16 r, a, b

vmul.s16 t, t, qinv

vqdmulh.s16 t, t, q

vhsub.s16 r, r, t

.endm

3.3 NTT Implementation

We implement NTT using CT butterflies and NTT−1 with GS butterflies. To minimize mem-
ory access costs, we adopt a merging strategy, extensively researched in [6, 7]. This strategy
harnesses the powerful load and store instructions inherent to the ARM architecture. For ex-
ample, the Cortex-M4 allows us to load/store four coefficients into the register simultaneously,
enabling us to perform butterfly operations across multiple layers at once. The number of reg-
isters available determines the maximum layers we can merge. Considering the need to retain
constants for modular arithmetic in the register, we have found merging up to four layers on the
Cortex-M4 to be efficient, as detailed in (3-3-1 or 4-3) by [7]. In the ARMv7 environment, we
merge three layers, followed by two, then another two, out of the seven layers in NTT. Similarly,
for NTT−1, we merge the seven layers in reverse order, combining them as two, then another
two, and finally (3+1). During the last phase of NTT−1, we integrate the conversion process to
the integer domain into the final layer, and pre-multiply the Montgomery multiplication of half
the coefficients by the twiddle factor. This strategy eliminates the need for 128 Montgomery
multiplications. As we employ the GS Butterfly for NTT−1, we invoke Barrett-reduction exclu-
sively in the 3rd and 5th layers. For optimal performance, we unfold one outer and one inner
loop.
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Table 1: Cycle counts (cc) for NTT on ODROID-XU4

Implementation
NTT Point multiplication NTT−1

(cc) (cc) (cc)

This work
1,718 1,200 2038
(+62%) (+50%) (+56%)

PQM4 [16]
4,474 2,422 4,684

(-)
Ref [1] 11,692 8,713 21,456

4 Evaluation

4.1 Benchmarking Setup

We have selected the ODROID-XU4 device, which features an ARM Cortex-A7 MPU, as our
target board. For compilation, we employ gcc 11.3.0 and the following compilation options:
-O3 -mcpu=native -mfpu=neon -ftree-vectorize. For comparative evaluation, we utilize
vectorized versions of the most recent PQM4 code and the reference code. These versions in-
corporate the Better-accumulation and Asymmetric-multiplication techniques from PQM4. In a
pure PQM4 scenario, we use a non-vectorized implementation of the keccak algorithm, ensuring
a benchmark comparison without altering the codebase. Both the reference and the proposal
presented in this paper undergo comparison using the keccak implementation, optimized with
neon-vectorized assembly.

4.2 Performance of Number Theoretic Transform

Although both the Reference and state-of-the-art PQM4 [16] codes automatically enable neon
during compilation, PQM4, implemented using ARMv7 assembly, exhibits a slower NTT-based
multiplication speed compared to the Reference code. Consequently, we select the Reference
code as the comparative baseline for NTT-based multiplication. For ARMv7-based Cortex A
environment, Our implementation achieves a performance improvement of 62 %, 50 %, and 56
% in NTT, Point multiplication, and NTT−1, respectively (cf Table 1).

4.3 Performance of Kyber

Similar to the comparison in NTT-based multiplication, we conduct a performance comparison
of Kyber against the vectorized Reference code rather than the PQM4 code (Please see Ta-
ble 2). Our Kyber512 implementation achieves a performance improvement of 51 %, 50 %, and
47 % in KeyGen, EnCapsulation, and DeCapsulation, respectively. For Kyber768, Our work
achieves a performance improvement of 48 %, 43 %, and 41 % in KeyGen, EnCapsulation, and
DeCapsulation, respectively. Finally, Our Kyber1024 implementation achieves a performance
improvement of 57 %, 52 %, and 48 % in KeyGen, EnCapsulation, and DeCapsulation, respec-
tively. The primary reason for the performance enhancement in our implementation lies in the
vectorized (fully parallelized) NTT-based multiplication.
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Table 2: Cycle counts (cc) for KeyGen, EnCaps, and Decaps of Kyber on ODROID-XU4

work
Kyber512 Kyber768 Kyber1024

(cc) (cc) (cc)

This work

K
110k 185k 294k

(+51%) (+50%) (+47%)

E
139k 230k 348k

(+48%) (+43%) (+41%)

D
133k 221k 339k

(+57%) (+52%) (+48%)

PQM4 [16]
K 430k 702k 1,119k
E 526k 861k 1,314k
D 472k 780k 1,211k

Ref [1]
(-)

K 223k 369k 552k
E 265k 405k 590k
D 309k 459k 655k

5 Conclusion

In this paper, we have proposed a parallel processing solution for NTT-based polynomial mul-
tiplication in the Kyber, leveraging the NEON extension set in an ARMv7 environment. To
our knowledge, our work stands as the first parallelized implementation on the ARMv7-based
Cortex-A series. Specifically, we introduce a modified parameter set and operation method to
maintain consistency in the parallel logic during modular multiplication and single coefficient
subtraction. As a result, Barrett reduction becomes faster during parallelization due to an
implicit shift, and Montgomery multiplication can undergo parallel processing throughout the
multiplication and subtraction process without the need for additional registers and instruc-
tions. Additionally, by adopting the latest optimization strategies, we perform merging in each
NTT and NTT−1 and omit 128 multiplications during the integer domain conversion process
in the final layer of InvNTT. Looking forward, we are keen to explore optimizations for the
Dilithium digital signature algorithm, another member of the Crystals series.
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A Kyber.CPAPKE Algorithm

Algorithm 4 Kyber.CPAPKE Keygen [1, 8]

Output: pk = (b̂, ρ), sk = ŝ
1: seed← {0, · · · , 255}32
2: ρ, σ ←SHAKE256(64, seed)

3: Â← GenMatrixA(ρ)
4: s ← SampleVec(σ, 0)
5: e ← SampleVec(σ, 1)

6: b̂← Â ◦ NTT(s) + NTT(e)

7: return pk = (b̂, ρ), sk = ŝ

Algorithm 5 Kyber.CPAPKE Enc [1, 8]

Input: pk = (b̂, ρ), message µ in Rq, seed coin ∈ {0, · · · , 255}32
Output: Ciphertext (u′, h)

1: Â← GenMatrixA(ρ)
2: s′ ← SampleVec(coin, 0)
3: e′ ← SampleVec(coin, 1)
4: e′′ ← SampleVec(coin, 2)
5: t̂← NTT(s′)

6: u← NTT−1(Â ◦ t̂) + e′

7: v̂← NTT−1(v̂T ◦ t̂) + e′′ + µ
8: return (u′ = Compress(u), h = Compress(v′))

Algorithm 6 Kyber.CPAPKE Dec [1, 8]

Input: Ciphertext c = (u′, h), secret key sk = ŝ
Output: Message µ ∈ Rq

1: u← Decompress(u′)
2: v′ ← Decompress(h)
3: return µ = v′−NTT−1(ŝT ◦ NTT(u))
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B Kyber.CCAKEM Algorithm

Algorithm 7 Kyber.CCAKEM Keygen [1]

Output: Public key pk
Output: Secret key sk
1: z ← B32
2: (pk, sk′) := Kyber.CPAPKE keygen()

3: sk := (sk′||pk||H(pk)||z)
4: return (pk, sk)

Algorithm 8 Kyber.CCAKEM Encaps [1]

Input: Public key pk
Output: Ciphertext c
Output: Shared key K
1: m← B32
2: m←H(m)
3: (K, r):= G(m||H(pk))
4: c := Kyber.CPAPKE Enc(pk,m, r)
5: K :=KDF(K——H(c))
6: return (c,K)

Algorithm 9 Kyber.CCAKEM Decaps [1]

Input: Ciphertext c
Input: Secret key sk
Output: Shared key K
1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32
3: z := sk + 24 · k · n/8 + 64
4: m′ := Kyber.CPAPKE Dec(c, sk)

5: (K
′
, r) :=G(m′||h)

6: c′ := Kyber.CPAPKE Enc(pk,m′, r′)
7: if c = c′ then
8: return (K := KDF(K

′||H(c))
9: else

10: return (K := KDF(z——H(c))

11: return K
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