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Abstract

In the rapidly expanding realm of the Internet of Things, network security is of paramount
importance, especially in the face of an increasing number of DoS attacks leveraging IoT de-
vices. This paper examines the underexplored area of the impact of data scaling approaches
on the effectiveness of machine learning-based Network Intrusion Detection Systems in de-
tecting DoS attacks in IoT networks. Specifically, it evaluates the performance of three
classifier algorithms, K-Nearest Neighbour, RandomForest, and Deep Neural Networks, on
three different datasets, focusing on how distinct feature scaling methods influence detec-
tion capabilities. Through a comprehensive experiment, the paper finds that the choice of
scaling method can significantly impact the performance of the NIDS. Results vary across
datasets and algorithms; for example, the ’Standard’ scaling generally outperforms oth-
ers for ANNs in one dataset, while the ’Quantile’ and ’Power’ scalings are more effective
for ANNs in another. This work fills the gap in the existing research on the machine-
learning-based network intrusion detection and has the potential to guide the development
of intrusion detection systems, particularly in the complex and vulnerable landscape of
IoT.

Keywords: Network Intrusion Detection, Data Scaling, Machine Learning, Preprocessing,
Feature Engineering

1 Introduction

In the evolving landscape of the Internet of Things (IoT), where an ever-growing number of
interconnected devices participate in data exchange—from personal smartphones to industrial
control systems—the urgency of robust network security measures cannot be overstated [1]. A
2023 report reveals that the Denial of Service (DoS) attacks involving IoT bots have seen a
staggering five-fold increase within a year [2], spotlighting IoT devices as susceptible vectors
for a gamut of network threats such as data theft, phishing, and spoofing [2][3]. Notably,
cyber incidents like the Mirai, Hajime, BusyBox, BrickerBot [4], Reaper and Persirai Botnets,
and many others [5] have emphasized these vulnerabilities, exploiting IoT devices to launch
devastating DDoS attacks or, in some cases, rendering them entirely unusable [6].

These events emphasize not just the potential risks but also the breadth of the attack surface
that IoT introduces. Thus, they signify an urgent necessity for innovative security solutions.
With a range of motivations for cyberattacks [7], as the complexity and volume of network data
escalate, machine learning techniques offer promising avenues for enhancing network intrusion
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detection systems (NIDS), particularly in identifying DoS attacks perpetrated through vulner-
able IoT devices [8]. While machine learning algorithms have exhibited significant promise in
enhancing the performance of NIDS [9], also in IoT settings [10], their effectiveness is heav-
ily influenced by the quality of the utilised data [11]. Unprocessed or poorly scaled data can
impact the algorithms’ capacity to detect network intrusions significantly. For example, some
machine learning algorithms are sensitive to the scale of feature values [12]; a feature that
ranges between 0 and 1 can disproportionately influence the outcome if another feature ranges
between 0 and 1000. This underscores the need for a rigorous understanding of the data scaling
techniques in the context of NIDS. Effective data scaling is not merely a preprocessing step;
it is a fundamental aspect that could greatly influence the detection capabilities of the entire
system [13], thus bearing direct implications for IoT security. Despite the pervasive adoption of
machine learning in NIDS, there remains a gap in research focusing on the role of data scaling
in this domain, especially in the increasingly vulnerable landscape of IoT. Most existing studies
have predominantly centred on feature selection, algorithmic optimization, or hyperparameter
tuning, often overlooking the initial yet critical phase of data scaling. This void in research is
all the more pertinent given the recent spike in DoS attacks involving IoT bots and the distinct
vulnerabilities that IoT devices introduce into network systems. A nuanced understanding of
how different data scaling techniques impact the performance of machine learning-based NIDS
could provide valuable insights for both researchers and practitioners. It can also guide the
development of more robust and adaptive intrusion detection systems that are well-suited to
the dynamic and complex nature of IoT networks.

This paper provides a comprehensive evaluation of five feature scaling methods tested on
DoS/DDoS samples and Benign samples extracted from three different NetFlow-based Network
Intrusion Detection open benchmark datasets applied as applied to three different ML algo-
rithms: K-Nearest Neighbour (KNN), RandomForest(RF) and Deep Neural Networks (DNN).
By providing a comprehensive evaluation of various feature scaling methods, specifically focus-
ing on DoS/DDoS and Benign samples across multiple open benchmark datasets and machine
learning algorithms, this paper contributes to the contemporary state of the art and addresses
a significant gap in the current understanding of ML-based NIDS effectiveness in an IoT con-
text. This work has the potential to shift the way researchers and practitioners approach the
development and optimisation of NIDS, particularly in the increasingly complex and vulnerable
domain of IoT.

While the study focuses on NIDS, the methodologies and findings are also applicable to Host-
based Intrusion Detection Systems (HIDS). The scalability and adaptability of the evaluated
feature scaling techniques make them suitable for deployment in HIDS, where data character-
istics and attack patterns may differ from network traffic.

The paper is structured as follows: Section 2 provides the Related Works with emphasis
on previous work on machine learning in NIDS and existing data preprocessing techniques in
NIDS, identifying the existing research gaps. Section 3 describes the used benchmarks, ML
methods and data scaling approaches. The experimental setup and results are showcased in
Section 4, the paper wraps up with the conclusions in Section 5.

2 Related Works

While ML-based NIDS is a widely researched domain, with 21900 search results on Google
Scholar as of the time of writing this paper, the topic of the influence of data scaling as a
preprocessing step is a relatively unexplored topic. In [14], the authors evaluate the effect of
three different scalers on the classification accuracy of one-class classifiers in intrusion detection.

2



Data Scaling Approaches in NIDS for IoT Pawlicki, Kozik, and Chora s

In [15], the authors experiment with using different scalers after applying a log transformation
of the data in their fast intrusion detection approach. The authors of [16] indicate that their
experiment points to the normalization steps having a positive effect on the accuracy of most
classifiers. A comprehensive evaluation of the impact of fourteen data normalization techniques
on classification is presented in [17], where a set of best and worst methods is proposed.

In contrast to the related works, this study focuses on testing the influence of scaling algo-
rithms on a range of algorithms (KNN, RF, ANN) and specifically using real-world NIDS data.
On top of that, since most real-world NIDS datasets suffer from the imbalance problem, solely
reporting accuracy may be misleading. This study evaluated metrics suited to classification
in an unbalanced scenario, most importantly the Balanced Accuracy (BAC) and Matthews
Correlation Coefficient (MCC). Those are derived from the confusion matrix, which contains
the True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).
This study also includes categorical features. Finally, the achieved outcome is rigorously tested
with the Wilcoxon signed-rank test to establish the significance of the results.

3 Materials and Methods

Three datasets were utilised in this study; two come from the NetFlow Datasets collection [18],
the third one is the SIMARGL2021 Dataset [9].

The NF-UQ-NIDS, commonly known as the NetFlow Dataset Collection, came about in
the pursuit of fostering a more robust NIDS. By amalgamating multiple smaller datasets and
calculating the aggregate NetFlow features, this comprehensive collection augments the scope
and applicability of NIDS research, offering a universal dataset encompassing flows from diverse
network and attack configurations, and facilitating comparative analyses across different test-
bed networks for similar attack scenarios. In this paper, the NF-BoT and NF-ToN subsets were
used.

The SIMARGL2021 dataset is sourced from a real-world academic network; it adheres
to the Netflow v9 format. It incorporates a comprehensive array of 44 unique features along
with labels for each frame. The dataset encompasses various attack types in addition to normal
traffic, offering a diversified landscape for NIDS research. The dataset involves vulnerable
systems running on different operating systems, an attacker network managed with Kali Linux,
and legitimate client traffic. This dataset comprises over 6.5 million frames of non-infected base
traffic and approximately 5.6 million frames labelled as attacks. Since SIMARGL2021 is not
specifically an IoT dataset, it will serve as a cross-check of the study findings.

In the presented study, the following data scaling approaches were adopted:

3.0.1 Standard Scaler

The Standard Scaler [19] removes the mean from the data, to centre it on zero, and then divides
by the standard deviation to get to the unit variance, as described in Equation 1, where Xscaled

is the standardized value, X is the original value of the data point, µ is the mean of the feature
and σ is the standard deviation of the feature from which the data point comes.

Xscaled =
X − µ

σ
(1)
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3.0.2 Min-Max Scaler

This approach removes the minimum value from the data and divides by the max-min range,
effectively scaling the data to the [0,1] range. Then, the standardised value can be multiplied
by the desired (max-min) range and shifted to min, as seen in Equation 2.

Xscaled =
X −Xmin

Xmax −Xmin
× (max−min) + min (2)

3.0.3 MaxAbs Scaler

This approach divides each element in a feature by the absolute maximum value of that feature,
as seen in Equation 3. This has the effect of restricting the range to [-1,1], without shifting and
centring the values.

scaled x =
x

|max abs|
(3)

3.0.4 Power Transformer

This approach applies a mathematical function (usually some power function) to a feature to get
its distribution into a bell curve. SciKit-Learn offers two options, Box-Cox Transformation and
the Yeo-Johnson Transformation. This paper uses the latter as it can work with both positive
and negative values. The Yeo-Johnson transformation of a single data point X is defined as
Equation 4, where X refers to a sample of data for a particular feature and λ controls the ”power”
in the power transformation. The objective is to find the best λ that makes the transformed
data y as close as possible to a normal distribution. In Yeo-Johnson, λ is estimated from
the data using maximum likelihood estimation, which will optimise the parameter iteratively
maximising the function in Equation 5 to arrive at a normal distribution, where n is the number
of data points and SSE is the sum of squared errors between the transformed data and its mean.

y =


(X+1)λ−1

λ if X ≥ 0, λ ̸= 0

log(X + 1) if X ≥ 0, λ = 0

− (−X+1)λ−1
λ if X < 0, λ ̸= 2

− log(−X + 1) if X < 0, λ = 2

(4)

L(λ) = −n

2
log(SSE) + (λ− 1)

n∑
i=1

log(|xi|+ 1) (5)

3.0.5 Quantile Transformer

This scaler breaks up the data into quantiles and uses the cumulative distribution function
(CDF) to map the values to a desired output distribution. Because the transformation is based
on rank and quantiles rather than actual values, it is less sensitive to outliers than the scalers
based on extremes and standard deviation. The transformation does not depend on the scale
of the features and it is non-linear, which may distort linear relationships but preserves the
monotonicity.

The work presented in this paper utilizes the following machine learning algorithms:
k-Nearest Neighbour is an instance-based learning algorithm where the function is ap-

proximated locally and all computation is deferred until classification. The algorithm measures
the distance of a datapoint to each datapoint in the set, sorts the distances it in an ascending
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order and uses a majority vote of the closest k datapoints to assign the label of the test sample
[20].

Random Forest is an ensemble technique which trains an array of simpler classifiers -
decision trees - on randomly subsampled parts of the training set and aggregates the decision
of this array of decision trees (e.g. with a majority vote) to arrive at the classification of the
test sample [21][22].

Deep Neural Networks are a set of popular learning algorithms named to describe the
multi-layered structure of computational nodes connected by adjustable weights. The weights
can be trained with the error backpropagation algorithm [23] to fit a function to a set of data,
a procedure which produces a classifier with astonishing learning ability [24][25].

Evaluation Metrics In the presented work, the standard performance metrics in NIDS
research were measured: Accuracy (ACC), Balanced Accuracy (BAC), Precision, Recall, F1-
Score, Matthews Correlation Coefficient (MCC), as defined in [25]. For brevity reasons, this
paper presents the BAC and MCC.

Wilcoxon Test is a non-parametric statistical test used to compare two sample distribu-
tions, applied when the data violate the assumptions of the paired t-test. It ranks the absolute
differences between paired datapoints and calculates a test statistic to find if the differences are
significant. This study opted for the Wilcoxon test over the standard ANOVA test due to its
suitability for non-parametric data and its effectiveness in handling the non-normal distribu-
tions.

4 Experiments

4.1 Experimental Setup

The experimental setup consisted of evaluating the performance of three ML algorithms: ANN,
k-NN and RF, on three distinct datasets: NF-BoT, NF-ToN, and SIMARGL2021. The datasets
contain varying types of network flow information, however for the experiment only DoS and
Benign traffic was used. The classifiers were selected for different characteristics: KNN is a
simple classifier, RF is relatively robust against overfitting, ANN has the potential to find very
complex relationships among features. A standard data preprocessing pipeline was employed.
This involved filling missing values and encoding categorical variables using frequency encoding.

A 10-fold stratified cross-validation approach was used for the experiment, with the train-
ing folds balanced with SMOTE for BoT and ToN datasets and Random Subsampling the
SIMARGL dataset, since it has significantly more Benign samples. Then, the balanced folds
were scaled with the evaluated five methods and for each method, a separate instance of each
of the three classifiers was trained, and tested on the test fold. The metrics were collected for
each fold. Having finished the 10-fold CV, when obtained metrics for each Algorithm/Dataset
combination were pitted against one another in a Wilcoxon test.

4.2 Results and Statistical Evaluation

Table 1: The pairs of scalers which reject the null hypothesis during the Wilcoxon
test, classifier: ANN

No. Algorithm Dataset Metric Rejected Hypothesis Which is Better
1 ANN BoT BAC Standard vs Quantile Standard
2 ANN BoT BAC Standard vs Power Standard
3 ANN BoT BAC Min-Max vs Quantile Min-Max
4 ANN BoT BAC Min-Max vs Power Min-Max
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Table 1: The pairs of scalers which reject the null hypothesis during the Wilcoxon
test, classifier: ANN

No. Algorithm Dataset Metric Rejected Hypothesis Which is Better
5 ANN BoT BAC Max-Abs vs Quantile Max-Abs
6 ANN BoT BAC Max-Abs vs Power Max-Abs
7 ANN BoT BAC Quantile vs Power Quantile
8 ANN BoT MCC Standard vs Quantile Standard
9 ANN BoT MCC Standard vs Power Standard
10 ANN BoT MCC Min-Max vs Quantile Min-Max
11 ANN BoT MCC Min-Max vs Power Min-Max
12 ANN BoT MCC Max-Abs vs Quantile Max-Abs
13 ANN BoT MCC Max-Abs vs Power Max-Abs
14 ANN BoT MCC Quantile vs Power Quantile
15 ANN ToN BAC Standard vs Quantile Quantile
16 ANN ToN BAC Standard vs Power Power
17 ANN ToN BAC Min-Max vs Quantile Quantile
18 ANN ToN BAC Min-Max vs Power Power
19 ANN ToN BAC Max-Abs vs Quantile Quantile
20 ANN ToN BAC Max-Abs vs Power Power
21 ANN ToN BAC Quantile vs Power Power
22 ANN ToN MCC Standard vs Quantile Quantile
23 ANN ToN MCC Standard vs Power Power
24 ANN ToN MCC Min-Max vs Quantile Quantile
25 ANN ToN MCC Min-Max vs Power Power
26 ANN ToN MCC Max-Abs vs Quantile Quantile
27 ANN ToN MCC Max-Abs vs Power Power
28 ANN ToN MCC Quantile vs Power Power
29 ANN SIMARGL BAC Standard vs Power Standard
30 ANN SIMARGL BAC Min-Max vs Power Min-Max
31 ANN SIMARGL MCC Standard vs Power Standard
32 ANN SIMARGL MCC Min-Max vs Quantile Quantile
33 ANN SIMARGL MCC Min-Max vs Power Min-Max
34 ANN SIMARGL MCC Max-Abs vs Quantile Quantile
35 ANN SIMARGL MCC Max-Abs vs Power Max-Abs
36 ANN SIMARGL MCC Quantile vs Power Quantile

Table 2: The pairs of scalers which reject the null hypothesis during the Wilcoxon
test, classifier: KNN

No. Algorithm Dataset Metric Rejected Hypothesis Which is Better
37 KNN ToN BAC Standard vs Min-Max Standard
38 KNN ToN BAC Standard vs Max-Abs Standard
39 KNN ToN BAC Standard vs Quantile Standard
40 KNN ToN BAC Standard vs Power Power
41 KNN ToN BAC Min-Max vs Quantile Quantile
42 KNN ToN BAC Min-Max vs Power Power
43 KNN ToN BAC Max-Abs vs Quantile Quantile
44 KNN ToN BAC Max-Abs vs Power Power
45 KNN ToN BAC Quantile vs Power Power
46 KNN ToN MCC Standard vs Min-Max Standard
47 KNN ToN MCC Standard vs Max-Abs Standard
48 KNN ToN MCC Standard vs Quantile Standard
49 KNN ToN MCC Standard vs Power Power
50 KNN ToN MCC Min-Max vs Quantile Quantile
51 KNN ToN MCC Min-Max vs Power Power
52 KNN ToN MCC Max-Abs vs Quantile Quantile
53 KNN ToN MCC Max-Abs vs Power Power
54 KNN ToN MCC Quantile vs Power Power
55 KNN SIMARGL BAC Standard vs Min-Max Min-Max
56 KNN SIMARGL BAC Standard vs Max-Abs Max-Abs
57 KNN SIMARGL BAC Standard vs Quantile Quantile
58 KNN SIMARGL BAC Standard vs Power Standard
59 KNN SIMARGL BAC Min-Max vs Max-Abs Min-Max
60 KNN SIMARGL BAC Min-Max vs Quantile Min-Max
61 KNN SIMARGL BAC Min-Max vs Power Min-Max
62 KNN SIMARGL BAC Max-Abs vs Quantile Max-Abs
63 KNN SIMARGL BAC Max-Abs vs Power Max-Abs
64 KNN SIMARGL BAC Quantile vs Power Quantile
65 KNN SIMARGL MCC Standard vs Min-Max Min-Max
66 KNN SIMARGL MCC Standard vs Max-Abs Max-Abs
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Table 2: The pairs of scalers which reject the null hypothesis during the Wilcoxon
test, classifier: KNN

No. Algorithm Dataset Metric Rejected Hypothesis Which is Better
67 KNN SIMARGL MCC Standard vs Quantile Quantile
68 KNN SIMARGL MCC Standard vs Power Standard
69 KNN SIMARGL MCC Min-Max vs Max-Abs Min-Max
70 KNN SIMARGL MCC Min-Max vs Quantile Min-Max
71 KNN SIMARGL MCC Min-Max vs Power Min-Max
72 KNN SIMARGL MCC Max-Abs vs Quantile Max-Abs
73 KNN SIMARGL MCC Max-Abs vs Power Max-Abs
74 KNN SIMARGL MCC Quantile vs Power Quantile

Table 3: The pairs of scalers which reject the null hypothesis during the Wilcoxon
test, classifier: RF.

No. Algorithm Dataset Metric Rejected Hypothesis Which is Better
75 RF BoT BAC Max-Abs vs Quantile Quantile
76 RF BoT BAC Quantile vs Power Quantile
77 RF BoT MCC Max-Abs vs Quantile Quantile
78 RF BoT MCC Quantile vs Power Quantile
79 RF ToN BAC Standard vs Min-Max Standard
80 RF ToN BAC Standard vs Max-Abs Standard
81 RF ToN BAC Min-Max vs Quantile Quantile
82 RF ToN BAC Min-Max vs Power Power
83 RF ToN BAC Max-Abs vs Quantile Quantile
84 RF ToN BAC Max-Abs vs Power Power
85 RF ToN MCC Standard vs Min-Max Standard
86 RF ToN MCC Standard vs Max-Abs Standard
87 RF ToN MCC Min-Max vs Quantile Quantile
88 RF ToN MCC Min-Max vs Power Power
89 RF ToN MCC Max-Abs vs Quantile Quantile
90 RF ToN MCC Max-Abs vs Power Power
91 RF SIMARGL BAC Min-Max vs Max-Abs Min-Max
92 RF SIMARGL BAC Min-Max vs Power Min-Max
93 RF SIMARGL BAC Max-Abs vs Quantile Quantile
94 RF SIMARGL BAC Quantile vs Power Quantile
95 RF SIMARGL MCC Min-Max vs Power Min-Max
96 RF SIMARGL MCC Max-Abs vs Quantile Quantile
97 RF SIMARGL MCC Quantile vs Power Quantile

Tables 1, 2 and 3 gather the results of the Wilcoxon test for RF. Out of 180 pairs of
calculated tests, the results of the 98 significant results were found with the Wilcoxon test. A
sample Boxplot for the BAC of the KNN classifier over the BoT dataset is showcased in Fig. 1.
For ANNs used on the BoT dataset, ’Standard’ scaling consistently outperforms ’Quantile’ and
’Power’ in terms of both BAC and MCC metrics. On the other hand, for the ToN dataset,
the ’Quantile’ and ’Power’ scaling techniques have the upper hand. For KNN, the ’Standard’
scaling seems generally superior in the ToN dataset, especially when compared with ’Min-Max’
and ’Max-Abs’, but the results shift when it comes to the SIMARGL dataset. In the case of RF,
the ’Quantile’ scaling has a slight edge in many of the comparisons across datasets, especially
in the BoT and SIMARGL datasets.

The behaviour of the Random Forest algorithm is especially worth emphasising, as it is
generally considered robust to the scale of input variables. The experiment suggests that the
particular preprocessing transformations of the input data can introduce nuances which impact
RF performance. The authors speculate that the ’Quantile’ transformer’s ability to force data
into a bell curve shape might indirectly affect RF’s effectiveness at partitioning the data. The
’Quantile’ transformer also handles outliers, which might be helpful for RF.
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Figure 1: Boxplot of achieved Balanced Accuracy for all the scalers, classifier: KNN, dataset:
BoT.

5 Conclusion

The conducted experiments and the subsequent statistical tests showcase that there is no one-
size-fits-all solution: the optimal scaling method can depend on the selected classifier and the
characteristics of the used dataset. Therefore, when developing an ML model, the experiments
suggest that it is beneficial to evaluate multiple scaling techniques to identify which one is
the most appropriate for the specific needs of the processing pipeline. The comprehensive
experiments reveal the distinct impact of each scaling technique on the performance of the
evaluated machine learning algorithms. The results of the Wilcoxon test further substantiate
the findings, highlighting the statistical significance of the observations and providing valuable
insights for future research in scaling methods for intrusion detection systems.
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