
Lattice-based Multi-Entity Identification Protocols

Yohei Watanabe1,2, Toi Tomita3, and Junji Shikata3,2

1 The University of Electro-Communications, Tokyo, Japan.
watanabe@uec.ac.jp

2 Japan Datacom Co., Ltd., Tokyo, Japan.
3 Yokohama National University, Yokohama, Japan.
{tomita-toi-sk, shikata-junji-rb}@ynu.ac.jp

Abstract

It is crucial for IoT networks to produce new methods to efficiently handle communica-
tions among multiple IoT devices. Aggregate MAC/signatures provide efficient multi-entity
authentication protocols. However, a server cannot identify malicious entities, i.e., imper-
sonated ones, though it can detect that there are some malicious ones. Recently, Hirose
and Shikata introduced aggregate entity authentication protocols, which enable the server
to simultaneously check the validity of multiple entities and identify malicious ones. Their
aggregate entity authentication protocol is based on symmetric-key primitives, and hence it
is lightweight. However, it requires key agreements between the server and entities before-
hand. In this paper, we introduce multi-entity identification, which is a public-key analogy
of aggregate entity authentication protocols, and propose two generic constructions. Since
all the building blocks of our generic constructions can be instantiated from lattices, our
constructions can be post-quantum ones.

Keywords: Aggregation, Entity authentication, Lattice-based cryptography

1 Introduction

1.1 Background

Internet-of-Things technologies have been spreading rapidly and enriching our lives. According
to a Cisco report [1], tens of billions of IoT devices are expected to be deployed over the next few
years. Therefore, it is crucial to figure out how we efficiently maintain and communicate with
many IoT devices. Based on this motivation, Hirose and Shikata introduced aggregate entity
authentication protocols [2, 3], which enable a server to authenticate many entities and identify
invalid ones of them. It achieves more efficient communication costs than a naive solution,
i.e., authenticating each entity individually. More specifically, Hirose and Shikata considered
a scenario where an edge device plays the role of an aggregator and collects authentication
information from each IoT device. Then, the aggregator performs efficient communications
with the server. They proposed a generic construction of an aggregate entity authentication
protocol from aggregate MACs [4] and a group-testing algorithm [5]. This construction only
relies on symmetric-key cryptographic primitives and hence is lightweight, though the server
needs to share secret keys with all entities.

1.2 Our Contributions

In this paper, we propose a multi-entity identification protocol as a public-key analogy of the
aggregate entity authentication protocol [2, 3]. Specifically, we consider the same setting as in
Hirose and Shikata’s work and extend standard, canonical identification protocols [6, 7, 8] to

The 7th International Conference on Mobile Internet Security (MobiSec’23), Dec. 19-21, 2023, Okinawa, Japan, Article No. 2

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

define a model and security notions of multi-entity identification protocols. We propose two
generic constructions of multi-entity identification protocols: one is aggregate signatures [9] and
group-testing algorithms; the other is from digital signatures, non-interactive batch arguments
(BARGs) [10], and group-testing algorithms. These primitives used in our constructions can
be instantiated from lattice-based assumptions. Hence, we obtain post-quantum multi-entity
identification protocols.

2 Preliminaries

2.1 Notations

For any integer a ∈ Z, let [a] := {1, 2, . . . , a}. For a finite set X , we use x
$← X to represent

processes of choosing an element x from X uniformly at random. For a finite set X , we denote
by x ← X and |X | the addition x to X and cardinality of X , respectively. Concatenation is
denoted by ∥. In the description of the algorithm, all arrays, strings, and sets are initialized
to empty ones. For any non-interactive algorithm A, out ← A(in) means that A takes in as
input and outputs out. We denote by AO(·) A allowed access to an oracle O. In this paper, we
consider two-party interactive algorithms between a sender and a receiver, and it is denoted by
(outS; outR)← A(inS; inR), where inS and inR are input of the sender and receiver, respectively,
and outS and outR are output of the sender and receiver, respectively. Throughout the paper,
we denote by κ a security parameter and consider probabilistic polynomial-time algorithms
(PPTAs). We say a function negl(·) is negligible if for any polynomial poly(·), there exists some
constant κ0 ∈ N such that negl(κ) < 1/poly(κ) for all κ ≥ κ0.

2.2 Digital Signatures

A digital signature Πds = (SSetup,SKGen,Sign,SigVer) is defined as follows.

– SSetup(1κ)→ pp: it takes a security parameter κ as input and outputs a public parameter
pp. Suppose pp includes a message sapceM.

– SKGen(pp)→ (sigk, verk): it takes the public parameter pp as input and outputs a pair of
a signing key and verification key (sigk, verk).

– Sign(pp, sigk,m)→ σ: it takes the public parameter pp, a signing key sigk, and a message
m ∈M as input and outputs a signature σ.

– SigVer(pp, verk, (m, σ)) → ans: it takes the public parameter pp, a verification key verk,
and a pair of a message and a signature (m, σ) as input and outputs ans ∈ {0, 1}.

Definition 1 (Correctness). Let Πds be a digital signature scheme. Πds is said to meet cor-
rectness if for all κ ∈ N, all pp ← SSetup(1κ), all (sigk, verk) ← SKGen(pp), all m ∈ M,
SigVer(pp, verk, (m,Sign(pp, sigk,m))) = 1 holds with overwhelming probability.

We consider a standard security notion for digital signatures, called unforgeability against
chosen message attacks (UF-CMA). Specifically, we consider a UF-CMA game against a PPTA
A in Fig. 1, and define A’s advantage in the security game as AdvUFΠds,A(κ) := Pr[ExpUFΠds,A(κ) = 1].

Definition 2 (UF-CMA). Let Πds be a digital signature scheme. Πds is said to be UF-CMA
secure if for sufficiently large κ ∈ N and any PPTA A, it holds AdvUFΠds,A(κ) < negl(κ).

2

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Experiment: ExpUFΠds,A(1
κ)

1: pp← SSetup(1κ)
2: (sigk⋆, verk⋆)← SKGen(pp)
3: (m⋆, σ⋆)← AOSign(pp, verk⋆)
4: if m⋆ /∈ SigList ∧ SigVer(pp, verk⋆,m⋆, σ⋆)→ 1 then
5: return 1
6: else
7: return 0

Figure 1: A UF-CMA game for a digital signature Πds. OSign is a signing oracle that returns
Sign(pp, sigk⋆,m) for any query m ∈M and adds m to SigList.

Experiment: ExpUFΠaggs,A(1
κ)

1: pp← SSetup(1κ, 1N)

2: (⃗verk
⋆
= (verk⋆i)i∈[N⋆], m⃗

⋆ = (m⋆
i)i∈[N⋆], σ

⋆
agg)← AOSKGen,OCrpt,OSign(pp)

3: if (N⋆ ≤ N) ∧ (∃i s.t. verk⋆i /∈ CrList ∧ m⋆
i /∈ SigList) ∧ (AggVer(pp, ⃗verk

⋆
, m⃗⋆, σ⋆

agg) → 1)
then

4: return 1
5: else
6: return 0

Figure 2: A UF-CAMA game for an aggregate signature Πaggs. OSKGen is a key-generation oracle
that runs (sigki, verki) ← SKGen(pp) and returns verki for an i-th query. OCrpt is a corruption
oracle that adds verki to CrList and returns sigki. OSign is the same one as in Fig. 1.

2.3 Aggregate Signatures

Aggregate signatures [9, 11] enable the compression of multiple signatures to a single one only
using public information. An aggregate signature scheme Πaggs consists of the same algorithms
(SSetup,SKGen,Sign,SigVer) of a DS Πds (with a slight modification to SSetup) and the follow-
ing algorithms (Agg,AggVer):

1) SSetup(1κ, 1N)→ pp: it takes a security parameter κ and an upper bound N = poly(κ) ∈
N for compression as input and outputs a public parameter pp. Suppose pp includes a
message sapceM.

2) Agg(pp, (verki,mi, σi)i∈[N ′])→ σagg: it takes the public parameter pp, N ′ (≤ N) verifica-
tion keys verki, a message mi ∈ M, a signature σi as input, and outputs an aggregated
signature σagg.

3) AggVer(pp, ⃗verk, m⃗, σagg) → ans: it takes the public parameter pp, N ′ (≤ N) verification

keys verk, N ′ messages m⃗ ∈MN ′
and an aggregated signature σagg as input, and outputs

ans ∈ {0, 1}, where ans = 1 and ans = 0 mean acceptance and rejection, respectively.

The correctness of Πaggs is defined as follows.

Definition 3 (Correctness). Let Πaggs be an aggregate signature scheme. Πaggs is said to meet
correctness if for all κ ∈ N, all N = poly(κ) ∈ N, all pp ← SSetup(1κ, 1N), all N ′ ≤ N , all

3

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

GT: GTest(I)
1: J0 := I
2: for i = 1, 2, . . . , ℓ do // Stage i
3: Ji := Ji−1

4: for j = 1, 2, . . . , |Gi| do
5: if g

(j)
i is negative then

6: Ji ← Ji \ I(g(j)
i)

7: Determine Gi+1 // determine tests in the next stage
8: return J := Jℓ

Figure 3: A group-testing algorithm.

i ∈ [N ′], (sigki, verki)← SKGen(pp), all mi ∈M, all σi ← Sign(pp, sigki,mi), it holds that

Pr[SigVer(pp, verki,mi, σi)→ 1] ≥ 1− negl(κ),

Pr[AggVer(pp, ⃗verk, m⃗,Agg(pp, (verki,mi, σi)i∈[N ′]))→ 1] ≥ 1− negl(κ),

where ⃗verk := (verk1, . . . , verkN ′) and m⃗ := (m1, . . . ,mN ′).

We consider a security notion for aggregate signatures, called unforgeability against cho-
sen aggregated message attacks (UF-CAMA). Specifically, we consider a UF-CAMA game
against a PPTA A in Fig. 2, and define A’s advantage in the security game as AdvUFΠaggs,A(κ) :=

Pr[ExpUFΠaggs,A(κ) = 1].

Definition 4 (UF-CAMA). Let Πaggs be an aggregate signature scheme. Πaggs is said to be
UF-CAMA secure if for sufficiently large κ ∈ N and any PPTA A, it holds AdvUFΠaggs,A(κ) < negl(κ).

2.4 Group Testing

Suppose there are multiple items, say id1, id2, . . . , idn, each of which is positive or negative. A
group testing algorithm GT [5] examines more than one item and outputs negative if and only
if all of them are negative, and enables one to identify all negative items with fewer tests than
by examining one by one.

For n items I = {id1, id2, . . . , idn}, each test can be denoted by an n-bit vector g ∈ {0, 1}n
such that g[j] = 1 holds if and only if the test examines the j-th item. g outputs negative if and
only if all items id ∈ I(g) are negative, where I(g) := {idj | g[j] = 1} is a set of items examined
by a test g. A group-testing algorithm is called non-adaptive if all the tests are determined
beforehand. On the other hand, an adaptive group-testing algorithm allows one to determine
the tests in the next stage after the tests in the current stage. A group testing algorithm GT

can be denoted by a sequence of test sets (Gi := {g(1)
i , g

(2)
i , . . . , g

(|Gi|)
i })ℓi=1, and ℓ = 1 if it is

non-adaptive.

It is reasonable to assume 0n /∈ G and
∨

g∈G g = 1n without loss of generality, where

G :=
⋃ℓ

i=1 Gi and ∨ denotes element-wise exclusive OR. We give a group-testing algorithm GT
for I as an algorithm GTest with (G1,G2, . . . ,Gℓ) in Fig. 3

4

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Experiment: ExpCRS-INDΠbarg,A (1κ, 1N)

1: (i⋆ ∈ [N], state)← A1(1
κ, 1N)

2: b
$← {0, 1}

3: if b = 0 then
4: crs← Setup(1κ, 1N)
5: else
6: (crs, td)← TrapSetup(1κ, 1N , i∗)
7: b′ ← A2(state, crs)
8: if b′ = b then
9: return 1

10: else
11: return 0

Experiment: ExpsExtΠbarg,A(1
κ, 1N)

1: (i⋆ ∈ [N], state)← A1(1
κ, 1N)

2: (crs∗, td)← TrapSetup(1κ, 1N , i∗)
3: (⃗x := (x1, . . . , xN), π)← A2(crs

∗)
4: w∗ ← Extract(td, x⃗, π)
5: if Verify(crs∗, x⃗, π) = 1 ∧ (xi∗ ,w

∗) /∈ R then
6: return 1
7: else
8: return 0

Figure 4: Gemes for CRS indistinguishability (left) and somewhere extractable in trapdoor mode (right).

We say GT is complete if the output J of GTest does not include any negative elements
in I. We say GT is sound if J includes all positive elements in I. If each test g outputs the
correct result, GT meets soundness but generally may not meet completeness.

Suppose that there are at most d positive items. There are several complete non-adaptive
group-testing algorithms with O(d2 log n) tests [12, 13, 14] and complete adaptive algorithms
with O(d log (n/d)) [15, 16].

2.5 Batch Arguments

For κ ∈ N, let x = poly(κ) ∈ N and w = poly′(κ) ∈ N. Let R ⊂ {0, 1}x × {0, 1}w be an NP
relation, and LR = {LR,κ = {x ∈ {0, 1}x | ∃w ∈ {0, 1}w : (x,w) ∈ R}} be an NP language
corresponding to R (we may simply write L = {Lκ}). For (x,w) ∈ R, we call x ∈ {0, 1}x a
statement and w ∈ {0, 1}w a witness of x.

A non-interactive batch argument (BARG) Πbarg [10, 17] for an NP language L consists of
three PPT algorithms (Setup,Prove,Verify) below.

1) Setup(1κ, 1N) → crs: it takes a security parameter 1κ and (the upper bound of) the
number of instances N = poly(κ) ∈ N as input and outputs a common reference string
(CRS) crs.

2) Prove(crs, x⃗, w⃗) → π: it takes the CRS crs, k (≤ N) statements x⃗ = (x1, x2, . . . , xk), and
their witnesses w⃗ = (w1,w2, . . . ,wk) as input and outputs a proof π.

3) Verify(crs, x⃗, π)→ ans: it takes the CRS crs, k (≤ N) statements x⃗ = (x1, x2, . . . , xk), and a
proof π as input and outputs ans ∈ {0, 1}, where ans = 1 and ans = 0 indicate acceptance
and rejection, respectively.

Completeness. We define the completeness property of BARG Πbarg as follows.

Definition 5 (Completeness). Let Πbarg be a BARG for an NP language L. Πbarg is said to
meet completeness if for κ ∈ N, all N = poly(κ) ∈ N, crs ← Setup(1κ, 1N), all k ∈ [N], and all
k pairs (xi,wi)i∈[k] ∈ Rk of a statement and its witness, π ← Prove(crs, (xi)i∈[k], (wi)i∈[k]), it
holds Verify(crs, (xi)i∈[k], π) = 1 with overwhelming probability.

5

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Somewhere argument of knowledge. We consider a special soundness property introduced
by Choudhuri et al. [18], called somewhere argument of knowledge.

Definition 6 (Somewhere Argument of Knowledge [18]). Let Πbarg be a BARG for an NP
language L. Πbarg is said to be somewhere argument of knowledge if there exists a pair of PPT
algorithms (TrapSetup,Extract) defined below:

4) TrapSetup(1κ, 1N , i∗)→ (crs∗, td): it takes a security parameter 1κ, (the upper bound of)
the number of instances N = poly(κ) ∈ N, and an index i∗ ∈ [N] as input, and outputs a
common reference string (CRS) crs and a trapdoor td;

5) Extract(td, x⃗, π) → w∗: it takes the trapdoor td, k (≤ N) statements x⃗ = (x1, x2, . . . , xk),
and a proof π as input, and outputs a witness w∗;

where (TrapSetup,Extract) satisifies the following two properties.

• CRS indistinguishability : Consider a PPT adversary A = (A1,A2) and a left-side exper-
iment in Fig. 4. BARG Πbarg is said to meet CRS indistinguishability if for any PPT
adversary A = (A1,A2), it holds |Pr[ExpCRS-INDΠbarg,A (1κ, 1N)→ 1]− 1/2| ≤ negl(κ).

• Somewhere extractable in trapdoor mode Consider a PPT adversary A = (A1,A2) and
a right-side experiment in Fig. 4. BARG Πbarg is said to be somewhere extractable in
trapdoor mode if for any PPT adversary A = (A1,A2), it holds Pr[ExpsExtΠbarg,A(1

κ, 1N) →
1] ≤ negl(κ).

3 Multi-Entity Identification Protocol

3.1 Model

We extend classical, canonical identification protocols [6, 7, 8] and introduce multi-entity iden-
tification protocol mID. We consider the same setting as the aggregate entity authentication
protocol [2, 3]; there are a server, an aggregator, and multiple entities. Each entity sends in-
formation to be identified to the aggregator, and the aggregator and the server collaboratively
identify both valid and invalid entities.

Formally, mID Σ = (PG,KG,P,V) is defined as follows.

1) PG(1κ, 1N) → par: a probabilistic algorithm run by the server that takes a security
parameter 1κ and the maximum number N = poly(κ) ∈ N of entities to be identified as
unput and outputs a systems parameter par, which includes a challenge set C.1

2) KG(id)→ (pkid, skid): a probabilistic algorithm run by entities that take an identifier id of
an entity as input and outputs a public key pkid and secret key skid for id.

3) P := (P1,P2): an algorithm, which is run by entities, that consists of two sub-algorithms
P1,P2 defined below:

3-1) P1(skid)→ (comid, stid): a probabilistic algorithm that takes a secret key skid as input
and outputs a commitment comid and state information stid.

3-2) P2(skid, comid, ch, stid)→ resid: a deterministic algorithm that takes a secret key skid,
a commitment comid, a challenge ch ∈ C, and state information stid as input, and
outputs a response resid.

4) V({pkid}id∈I , ch; {pkid, resid}id∈I)→ (Î; ack): a deterministic interactive algorithm run be-
tween the server and the aggregator. The server-side algorithm takes public keys {pkid}id∈I

1All algorithms except for PG take par as input, so we omit it from the input of the algorithms.

6

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Oracle: Transpar(id, ch)

1: if (pkid, skid) has not been generated then
2: (pkid, skid)← KG(par, id)
3: (comid, stid)← P1(skid)
4: if ch /∈ ChList then
5: ch

$← C
6: ChList← ch
7: resid ← P2(skid, comid, ch, stid)
8: return (comid, ch, resid)

Figure 5: Transpar oracle. ChList is a list of generated challenges.

Experiment: ExpcorΣ,A(1
κ, 1N)

1: par← PG(1κ, 1N)
2: id⋆ ← ATranspar,KGpar(par)
3: (comid, stid)← P1(skid)

4: ch⋆
$← C

5: resid ← P2(skid, comid, ch
⋆, stid)

6:

7: if V(pkid, ch
⋆; pkid, resid)→ (⊥; ack) then

8: return 1
9: else if V(pkid, ch

⋆; pkid, resid)→ (id; ack) then
10: return 0

Figure 6: The correctness game. KGpar is an oracle that takes id as input and returns KG(par, id).
Suppose id⋆ is issued to OKG.

of I and a challenge ch as input and the aggregator-side algorithm takes the public keys
and responses {pkid, resid}id∈I of I as input, and they interact with each other. Finally, the

server-side algorithm outputs rejected identifiers Î ⊂ I of invalid entities; the aggregator-
side algorithm outputs acknowledgment ack.

Suppose that a systems parameter par and each entity’s key pair (pkid, skid) are correctly
generated by PG and KG. Then, mID is executed as follows.

i. Each entity runs P1(skid) to generate a commitment comid and state information stid, and
sends the aggregator comid.

ii. The aggregator broadcasts ch ∈ C randomly chosen by the server to n (≤ N) entities
(id1, . . . , idn).

iii. Each entity receives ch and runs P2(skid, comid, ch, stid) to obtain and send a response resid
to the aggregator.

iv. The server and aggregator run V({pkid}id∈I , ch; {pkid, resid}id∈I), and the server obtains a

set of invalid entities’ identifiers Î (and accepts the rest of entities as valid ones).

To define the correctness property of the above model, we define an oracle Transpar that sim-
ulates interactions between valid entities and the server in Fig. 5. Trans takes as input entity’s

7

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Experiment: Expimp-pa
Σ,A (1κ, 1N)

1: par← PG(1κ, 1N)

2: (I⋆h , I⋆a , {comid}id∈I⋆
a
, state)← A

Transpar,OKG,OCrpt

1 (par)
3: for ∀id ∈ I⋆h do
4: (comid, stid)← P1(skid)

5: ch⋆
$← C

6: (Î⋆h , Î⋆a , {resid}id∈Î⋆
a
)← A

Transpar,OKG,OCrpt

2 (state, ch⋆, {comid}id∈I⋆
h
)

7: for ∀id ∈ Î⋆h do
8: resid ← P2(skid, comid, ch

⋆, stid)

9: Ĩ⋆ := ∅ // initialize a set of impersonated entities

10: for ∀id ∈ Î⋆a \ ICrpt do
11: if (id, ch⋆) /∈ TrList then

12: Ĩ⋆ ← id // set id as an impersonated entity

13: V({pkid}id∈Î⋆
h ∪Î⋆

a
, ch⋆; {pkid, resid}id∈Î⋆

h ∪Î⋆
a
)→ (Î⋆; ack)

14: if Ĩ⋆ ̸⊂ Î⋆ then // at least one entity is not identified
15: return 1
16: else
17: return 0

Figure 7: A security game against impersonation under passive attacks. It holds that Î⋆h ⊂ I⋆h ,
I⋆a ⊂ Î⋆a , and I⋆h ∪ I⋆a = Î⋆h ∪ Î⋆a . OKG is an oracle that takes id as input, runs (pkid, skid) ←
KG(par, id), returns pkid. Without loss of generality, suppose that all id ∈ I⋆h ∪ I⋆a (= Î⋆h ∪ Î⋆a) are
issued to OKG. OCrpt is an oracle that takes id, which was previously issued to OKG, as input, adds
id to ICrpt, and returns a stored secret key skid.

identifier id and a randomly-chosen challenge ch and outputs a transcript (comid, ch, resid). Note
that Trans reuses ch if it is previously generated.

The correctness property is defined with an experiment ExpcorΣ,A in Fig. 6.

Definition 7 (Correctness). Let Σ be an mID protocol. Σ is said to be correct if for sufficiently
large κ ∈ N, all N = poly(κ) ∈ N, all PPT algorithm A, Pr[ExpcorΣ,A(1

κ, 1N) → 1] ≥ 1 − negl(κ)
holds.

3.2 Security Notions

Security against impersonation under passive attacks. As in the standard canonical
identification protocols, we consider security against impersonation under passive attacks as a
basic security notion for mID. This guarantees that the adversary provided valid transcripts
between the honest aggregator and honest entities cannot impersonate the honest entities. This
notion is defined with an experiment Expimp-pa

Σ,A in Fig. 7 as follows.

Definition 8 (Security against Impersonation under Passive Attacks). Let Σ be mID. mID is
said to be secure against impersonation under passive attacks if for sufficiently large κ ∈ N, all
N = poly(κ) ∈ N, all PPT algorithms A, Pr[Expimp-pa

Σ,A (1κ, 1N)→ 1] ≤ negl(κ) holds.

8

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Experiment: ExpzΣ,A(1
κ, 1N)

1: par← PG(1κ, 1N)

2: (I⋆h , I⋆a , {comid}id∈I⋆
a
, state)← A

Transpar,OKG,OCrpt

1 (par)
3: for ∀id ∈ I⋆h do
4: (comid, stid)← P1(skid)

5: ch⋆
$← C

6: (Î⋆h , Î⋆a , {resid}id∈Î⋆
a
)← A

Transpar,OKG,OCrpt

2 (state, ch⋆, {comid}id∈I⋆
h
)

7: for ∀id ∈ Î⋆h do
8: resid ← P2(skid, comid, ch

⋆, stid)

9: V({pkid}id∈Î⋆
h ∪Î⋆

a
, ch⋆; {pkid, resid}id∈Î⋆

h ∪Î⋆
a
)→ (Î⋆; ack)

10: I⋆comp := ∅ and I⋆snd := ∅
11: for ∀id ∈ Îh ∪ Îa do
12: if V(pkid, ch

⋆; pkid, resid)→ (⊥; ack) then
13: I⋆comp ← id // set id as an accepted entity
14: else if V(pkid, ch

⋆; pkid, resid)→ (id; ack) then
15: I⋆snd ← id // set id as a malicious entity

16: if (z = comp) ∧ (I⋆comp ∩ Î⋆ ̸= ∅) then // at least one accepted entity is rejected
17: return 1
18: else if (z = snd) ∧ (I⋆snd \ Î⋆ ̸= ∅) then // at least one malicious entity is accepted
19: return 1
20: else
21: return 0

Figure 8: A game for completeness and soundness. It hold Î⋆h ⊂ I⋆h , I⋆a ⊂ Î⋆a , and I⋆h ∪ I⋆a =
Î⋆h ∪ Î⋆a . OKG and OCrpt are the same oracles as in Fig. 7.

Note that if A outputs (I⋆h , I⋆a) such that |I⋆h | = 0 and |I⋆a | = 1 hold, the security game
in Fig. 7 is equivalent to the security game for the standard canonical identification protocol
(except for thy existence of the aggregator).

Completeness and soundness. The completeness property guarantees that no false positive
occurs, i.e., the server does not identify valid entities as invalid ones, while the soundness
property guarantees that no false negative occurs, i.e., the server does not identify invalid
entities as valid ones. Completeness and soundness are defined with an experiment ExpzΣ,A in
Fig. 8 as follows.

Definition 9 (Completeness). Let Σ be mID. mID is said to be complete if for sufficiently large
κ ∈ N, all N = poly(κ) ∈ N, all PPT algorithms A, Pr[Expcomp

Σ,A (1κ, 1N)→ 1] ≤ negl(κ) holds.

Definition 10 (Soundness). Let Σ be mID. mID is said to be sound if for sufficiently large
κ ∈ N, all N = poly(κ) ∈ N, all PPT algorithms A, Pr[ExpsndΣ,A(1

κ, 1N)→ 1] ≤ negl(κ) holds.

4 Proposed Constructions

We propose two mID protocols based on the aggregate entity authentication protocol [2, 3] and
Waters and Wu’s aggregate signature scheme [17]. Both constructions can be instantiated as

9

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

mID Σ: PG(1κ, 1N)

1: pp← SSetup(1κ)
2: return par := pp

mID Σ: P1(skid)

1: return (comid, stid) := (⊥,⊥)

mID Σ: KG(par, id)

1: (sigkid, verkid)← SKGen(pp)
2: return (skid, pkid) := ((sigkid, id), (verkid, id))

mID Σ: P2(skid, comid, ch, stid)

1: σid ← Sign(sigkid, ch)
2: return resid := (id, σid)

mID Σ: V({pkid}id∈I , ch ∈ {0, 1}poly(κ); {pkid, resid}id∈I)

Server & Aggregator:

1: Aggregator sends I to Server // suppose I = (id1, . . . , idn) and n ≤ N
2: if n = 1, i.e., I = {id} then
3: if Server runs SigVer(verkid, ch, σid) = 1 then

4: return Î := ∅
5: else
6: return Î := id
7: Server sends ch to Aggregator
8: Set J0 := I and chid := ch // for notational convenience

9: for i = 1, 2, . . . , ℓ do (to line 20)
10: Determine Gi based on ans1, . . . , ansi−1

Aggregator:

11: for j = 1, 2, . . . , |Gi| do
12: Agg(pp, (verkid, chid, σid)id∈I(g

(j)
i)

)→ σ
(j)
i

13: Send (σ
(1)
i , . . . , σ

(|Gi|)
i) to Server

Server:

14: Ji := Ji−1

15: for j = 1, 2, . . . , |Gi| do
16: AggVer(pp, (verkid)id∈I(g

(j)
i)

, (chid)id∈I(g
(j)
i)

, σ
(j)
i)→ ans

(j)
i

17: if ans
(j)
i = 1 then

18: Ji ← Ji \ I(g
(j)
i)

19: Send ansi := (ans
(1)
i , . . . , ans

(|Gi|)
i) to Aggregator

Server & Aggregator:

20: end for (from line 9)

Server:

21: return Î := Jℓ
Aggregator:

22: return ack

Figure 9: An mID Σ from an aggregate signature scheme Πaggs and a group-testing algorithm GT.

post-quantum protocols.

4.1 Construction from Aggregate Signatures and Group Testing

We propose an mID protocol from an aggregate signature Πaggs = (SSetup,SKGen,Sign,SigVer,
Agg,AggVer) and a group-testing algorithm GT. We formally describe our construction in
Fig. 9.

10

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Theorem 1. If Πaggs meets correctness, our mID protocol meets correctness.

Proof. It is straightforward, so we only describe an overview. A key pair (sigkid, verkid) of
the underlying aggregate signature is generated independent of the underlying identifier id.
Therefore, regardless of A’s choice of id⋆, a signature σid⋆ is generated from sigkid⋆ and a challenge
ch. Therefore, breaking the correctness property defined in Definition 7 means that breaking
the correctness property of Πaggs in Definition 3.

Theorem 2. If Πaggs meets UF-CAMA security, our mID protocol is secure against imperson-
ation under passive attacks.

Proof. We construct an adversary F that breaks UF-CAMA security of Πaggs by using an
adversary A that breaks the security against impersonation under passive attacks. Suppose
that F receives verk⋆ from the challenger of the UF-CAMA game. First, F randomly chooses
an index i⋆. Let id⋆ be an identifier issued at i⋆-th query to OKG. Receiving a query id, F
simulates OKG as follows: if it is i⋆-th query, then F returns verk⋆; otherwise, F computes
(sigkid, verkid) ← SKGen(pp), stores sigkid, and returns verk. Receiving a query id, F simulates
OCrpt by returning the stored signing key sigkid. If id

⋆ is issued, F aborts the game and output
a random bit. Receiving a query (id, ch), F simulates Transpar as follows: if id = id∗, F issues
a query ch to OSign to get σ, and simulates the rest of Transpar with σ; otherwise, F has the

corresponding signing key sigkid and can simulate Transpar. After A submits (Î⋆h , Î⋆a , {resid}id∈Î⋆
a
),

F computes resid for id ∈ Î⋆h , and runs V({pkid}id∈Î⋆
h ∪Î⋆

a
, ch⋆; {pkid, resid}id∈Î⋆

h ∪Î⋆
a
) to obtain Î⋆.

If id⋆ ̸∈ Ĩ⋆ \ Î⋆, F aborts the game and outputs a random bit. Otherwise, there must be an
aggregated signature σagg that breaks UF-CAMA security, and therefore F submits it to the
challenger of UF-CAMA game. Note that the probability that F correctly guesses i⋆ is at least
1/N .

Theorem 3. If Πds meets correctness and GT is complete, then our mID protocol satisfies
completeness.

Proof. We omit the proof since it is straightforward.

Theorem 4. If Πaggs meets UF-CAMA security and GT is sound, then our mID protocol satisfies
soundness.

Proof. In the experiment ExpsndΣ,A(1
κ, 1N), at least one malicious entity is accepted if and only

if (1) GT correctly works but some (aggregated) signatures are successfully forged; or (2) all
(aggregated) signatures are valid but a soundness error occurs in GT. The situation (1) never
occurs since Πaggs meets UF-CAMA security, and as in the proof of Theorem 2, we can construct
an adversary F that breaks UF-CAMA security of Πaggs by using an adversary A that breaks
soundness under the situation (1). The situation (2) also never occurs since GT is sound.

On post-quantum instantiations and their efficiency. We can obtain lattice-based mID
protocol by instantiating the proposed mID protocol with post-quantum aggregate signatures,
e.g., [19]. The concrete mID protocol can be instantiated from Tomita and Shikata’s aggre-
gate signature [19] that achieves the logarithmic aggregate signature size, i.e., O(log n), and
the complete adaptive group-testing algorithm with O(d log (n/d)) tests [16], and it requires
O(d log (n/d) log n) communication costs. Therefore, our instantiation is more efficient than
a naive solution, i.e., parallel executions of canonical identification protocols for each entity,
which requires O(n) communication costs.

11

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

mID Σ: V({pkid}id∈I , ch ∈ {0, 1}poly(κ); {pkid, resid}id∈I)

Server & Aggregator:

1: Aggregator sends I to Server // suppose I = (id1, . . . , idn) and n ≤ N
2: Server sends ch to Aggregator
3: Set J0 := I and chid := ch // for notational convenience

4: for i = 1, 2, . . . , ℓ do (to line 18)
5: Determine Gi based on ans1, . . . , ansi−1

Aggregator:

6: for j = 1, 2, . . . , |Gi| do
7: Convert (verkid, chid)id∈I(g

(j)
i)

to NP statements x⃗
(j)
i := (xid)id∈I(g

(j)
i)

8: Convert (σid)id∈I(g
(j)
i)

to witnesses w⃗
(j)
i := (wid)id∈I(g

(j)
i)

9: Prove(crs, x⃗
(j)
i , w⃗

(j)
i)→ π

(j)
i

10: Send (π
(1)
i , . . . , π

(|Gi|)
i) to Server

Server:

11: Ji := Ji−1

12: for j = 1, 2, . . . , |Gi| do
13: Convert (verkid, chid)id∈I(g

(j)
i)

to NP statements x⃗
(j)
i := (xid)id∈I(g

(j)
i)

14: Verify(crs, x⃗
(j)
i , π

(j)
i)→ ans

(j)
i

15: if ans
(j)
i = 1 then

16: Ji ← Ji \ I(g
(j)
i)

17: Send ansi := (ans
(1)
i , . . . , ans

(|Gi|)
i) to Aggregator

Server & Aggregator:

18: end for (from line 4)

Server:

19: return Î := Jℓ
Aggregator:

20: return ack

Figure 10: An mID Σ from a digital signature scheme Πds, a BARG Πbarg, and a group-testing algorithm
GT. PG(1κ, 1N) runs pp ← SSetup(1κ, 1N) and crs ← Setup(1κ, 1N) and returns par := (pp, crs). KG, P1,
and P2 are the same as those in Fig. 9.

4.2 Construction from Digital Signatures, BARGs, and Group Test-
ing

We can break down the primitive used in the first construction based on Waters and Wu’s
aggregate signature scheme constructed from digital signatures and BARGs [17]. We show a
variant of the construction in the previous section from a digital signature Πds = (SSetup,
SKGen,Sign,SigVer)a BARG Πbarg = (Setup,Prove,Verify) for an NP language L = {Lκ :=
{(verk,m) | ∃π ∈ {0, 1}poly(κ) s.t. SigVer(verk,m, π) = 1}}κ∈N, and a group-testing algorithm
GT. We formally describe our construction in Fig. 10, and omit the proofs since they follow
from the security proofs of our mID protocol in the previous section and Waters and Wu’s
aggregate signature scheme.

Theorem 5. If Πds meets correctness, our mID protocol meets correctness.

Theorem 6. If Πds meets UF-CMA security and Πbarg is somewhere argument of knowledge,
our mID protocol is secure against impersonation under passive attacks.

12

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

Theorem 7. If Πds meets correctness, Πbarg meets completeness, and GT is complete, then
our mID protocol satisfies completeness.

Theorem 8. If Πds meets UF-CMA security, Πbarg is somewhere arugment of knowledge, and
GT is sound, then our mID protocol satisfies soundness.

On post-quantum instantiations and their efficiency. We can obtain lattice-based mID
protocol by instantiating the proposed mID protocol with post-quantum constructions of digital
signatures, such as Dilithium [20, 21] and Falcon [22], and BARGs [18, 23, 24, 25]. Dilithium and
Falcon are quite efficient, and the recent BARG constructions [18, 23, 24, 25] achieve logarithmic
proof sizes in the number of statements, i.e., O(log n). The concrete mID protocol can be
instantiated from those and the complete adaptive group-testing algorithm with O(d log (n/d))
tests [16], and requires O(d log (n/d) log n) communication costs. Therefore, as in the previous
section, our instantiation is more efficient than a naive solution, i.e., parallel executions of
canonical identification protocols for each entity, which requires O(n) communication costs.

5 Concluding Remarks

In this paper, we considered a public-key variant of aggregate entity authentication proto-
cols [2, 3], and introduced multi-entity identification mID protocols. We formally gave a math-
ematical model, formalized its security notions, and showed two generic constructions of mID
protocols. Since the proposed constructions can be instantiated from lattice-based assumptions,
we obtain post-quantum mID protocols. Our constructions are both signature-based ones; they
require (aggregate) signature schemes as the building blocks. It would be interesting to show
constructions without signature primitives, e.g., an mID protocol constructed from the canonical
identification protocol [6, 7, 8].

Acknowledgement

The results were obtained from the commissioned research (No.03901) by National Institute of
Information and Communications Technology (NICT), Japan.

References

[1] The internet of things reference model. Technical report, Cisco, 2014.

[2] Shoichi Hirose and Junji Shikata. Group-testing aggregate entity authentication. In IEEE Infor-
mation Theory Workshop (ITW) 2023, pages 227–231. IEEE, 2023.

[3] Shoichi Hirose and Junji Shikata. Aggregate entity authentication identifying invalid entities with
group testing. Electronics, 12(11), 2023.

[4] Jonathan Katz and AndrewY. Lindell. Aggregate message authentication codes. In CT-RSA 2008,
volume 4964, pages 155–169. Springer Berlin Heidelberg, 2008.

[5] Robert Dorfman. The detection of defective members of large populations. The Annals of Math-
ematical Statistics, 14(4):436–440, 1943.

[6] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology – CRYPTO’ 86, volume 263, pages 186–194.
Springer Berlin Heidelberg, 1987.

13

Lattice-based Multi-Entity Identification Protocol Watanabe et al.

[7] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology – CRYPTO ’88, volume 403, pages
216–231. Springer, 1988.

[8] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174,
1991.

[9] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Advances in Cryptology – EUROCRYPT 2003, volume 2656,
pages 416–432. Springer, 2003.

[10] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Annual ACM SIGACT Symposium on Theory of Computing (STOC) 2019, pages 1115–1124.
ACM, 2019.

[11] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In ICALP 2007, volume 4596, pages 411–422. Springer, 2007.

[12] Arkadii G. Dýachkov, Vyacheslav V. Rykov, and Ahmed M. Rashad. Superimposed distance
codes. Problems of Control and Information Theory, 18:237–250, 1989.

[13] Ely Porat and Amir Rothschild. Explicit non-adaptive combinatorial group testing schemes. In
Automata, Languages and Programming, pages 748–759. Springer, 2008.

[14] Matthew Aldridge, Oliver Johnson, and Jonathan Scarlett. Group testing: An information theory
perspective. Found. Trends Commun. Inf. Theory, 15(3-4):196–392, 2019.

[15] Chou Hsiung Li. A sequential method for screening experimental variables. Journal of the Amer-
ican Statistical Association, 57(298):455–477, 1962.

[16] David Eppstein, Michael T. Goodrich, and Daniel S. Hirschberg. Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM Journal on Computing, 36(5):1360–1375,
2007.

[17] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In Advances in Cryptology – CRYPTO 2022, volume 13508, pages 433–463. Springer,
2022.

[18] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for P from lwe. In IEEE Annual
Symposium on Foundations of Computer Science (FOCS) 2021, pages 68–79, 2022.

[19] Toi Tomita and Junji Shikata. A concretely compact lattice-based aggregate signature scheme.
unpublished manuscript, 2023.

[20] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

[21] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. Dilithium. Technical report, National Institute of Standards and
Technology, 2022.

[22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon.
Technical report, National Institute of Standards and Technology, 2022.

[23] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive
arguments for batch-np and applications. In IEEE Annual Symposium on Foundations of Computer
Science (FOCS) 2022, pages 1057–1068, 2022.

[24] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.
In IEEE Annual Symposium on Foundations of Computer Science (FOCS) 2022, pages 1045–1056,
2022.

[25] Toi Tomita and Junji Shikata. Compact signature aggregation from module-lattices. IACR Cryptol.
ePrint Arch., (471), 2023.

14

	Introduction
	Background
	Our Contributions

	Preliminaries
	Notations
	Digital Signatures
	Aggregate Signatures
	Group Testing
	Batch Arguments

	Multi-Entity Identification Protocol
	Model
	Security Notions

	Proposed Constructions
	Construction from Aggregate Signatures and Group Testing
	Construction from Digital Signatures, BARGs, and Group Testing

	Concluding Remarks

