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Abstract—The use of PV power plants has increased signifi-
cantly in recent years. The use of PV power plants has issues in
the power grid system, where the PV power plant cannot generate
a stable output every day due to weather changes. To solve those
issues, forecasting using deep learning models emerges as the
solution. This study explains how to forecast the PV power output
using historical weather data. The forecast period is 24-hours
ahead and employs several deep learning models, such as RNN,
LSTM, BiLSTM, ConvLSTM, and LSTM-BNN. The results show
that forecasting the 24-hour PV power output using historical
weather data as input for the deep learning model is possible
and express promising results. Based on the implementation, the
LSTM-BNN models outperform other models with a small MSE
and MAE metrics value of 0.0082 and 0.0847, respectively.

Index Terms—Deep Learning, Power Output Forecasting, PV
Power Plant, Recurrent Neural Network

I. INTRODUCTION

In our current society, electricity emerges as an important
aspect of daily life. As society modernizes, the demand for
electricity is expected to increase [1]. In the past, electricity
was generated from a power plant fueled by fossil fuels. As
a result, it emits a lot of pollution, like carbon dioxide and
greenhouse gases, which cause a significant climate issue in
the world. Therefore, renewable energy sources are seen as
promising alternatives to generate electricity, replacing fossil
fuels. According to [2], various types of renewable energy
exist, such as solar energy, wind energy, geothermal energy,
hydropower, ocean energy, and bioenergy. These renewable
energies can be used to replace the use of fossil fuels, thus
enabling the generation of electricity without emitting any
pollution.

Among various types of renewable energies, solar power
is the most preferred and utilized. By using a photovoltaic
(PV) module, the solar energy can be directly converted into
electricity. The process of generating electricity using solar
power is simple; it does not require a stable water supply
as in hydropower or expensive construction as in geothermal
energy. In solar energy, the PV module can be installed almost
anywhere, as long as it receives direct sunlight. Moreover, the
PV module has a relatively low installation cost and is easier
to construct compared to other renewable energies. By adding
an energy management system, a battery, and an inverter, the
electricity generated by the PV module can be easily integrated
with the power grid. Due to the aforementioned advantages,
the installation of solar power plants grows rapidly in the

world, where it is forecast that the annual installed capacity
will reach 222 GW [3].

However, despite having numerous advantages, solar
energy-based power plants also have several issues. Every day,
the amount of sunlight received by the PV module is changed
due to various environmental factors, such as cloud cover that
prevents the PV module from receiving sunlight directly. As a
result, the amount of electricity generated by the PV module
is highly stochastic [4], proportional to the rapid changes in
the environment. Hence, constant electric power cannot be
generated by the PV, which becomes a huge problem when
using it as the primary power source. A constant electric power
supply is important to ensure that the generated electricity
is adequate to fulfill consumer energy demands. Uncertainty
in power generation also affects power grid system planning
and pricing, especially when numerous PV power plants from
residential and commercial users are integrated into the main
power grid system [5].

In order to solve the uncertainty problem in power gener-
ation, it is necessary to perform a forecast of the PV power
plant’s electricity output. The forecasting method utilizes the
PV power plant’s historical data to provide an estimation of
the future output power of the PV. The forecasted output power
can be utilized for better planning, decision-making, or power
trading [5]. According to [5], we normally group the forecast
period into four categories:

1) Very short-term: less than 1 minute.
2) Short-term: between 1 hour and several hours.
3) Medium-term: between 1 week and 1 month.
4) Long-term: between 1 month and 1 year.
Several works propose various forecasting methods for each

forecast period. In [6], a 5-minute ahead power output forecast
is performed, where artificial neural networks (ANN), random
forests (RF), decision trees (DT), extreme gradient boosting
(XGB), and long short-term memory (LSTM) are utilized to
learn from historical weather data and solar power output. The
results show that all algorithms can be used for forecasting PV
power output, and ANN shows the best performance among
other algorithms. The results of this very short-term forecast
period are usually used for control purposes in the PV power
plant.

The short-term forecast period is the common period for PV
power forecasting. As shown in [7, 8, 9, 10, 11], numerous
researchers try to forecast the PV power output from 1-hour



ahead up to 72-hour ahead. Varieties of algorithms were also
utilized and proposed, and most of them showed reliable
forecast performance. The popularity of the short-term forecast
period is caused by its important application, where it is
usually used for scheduling or decision-making for the next
day. Then, some researchers also perform a medium-term
forecast, where an evolutionary seasonal decomposition least-
square support vector regression (ESDLS-SVR) is proposed
for forecasting monthly PV power output in Taiwan [12]. The
medium-term forecast is usually used for easier power system
planning and scheduling maintenance, according to [5].

In this work, the purpose is to develop a 24-hour power
output forecast using several deep learning algorithms. The
forecast utilized PV power output and weather data that was
collected from real-world implementation. Several models,
such as recurrent neural network (RNN), LSTM, bidirectional
LSTM (BiLSTM), convolutional LSTM (ConvLSTM), and
LSTM-bayesian neural network (LSTM-BNN), are utilized in
this work to compare the performance of each model and
output the best-performing models.

II. DATASET COLLECTION

The dataset collection is important to develop proper data
for the models to learn. The dataset collection in this work is
divided into two parts: collecting the PV power output data
and collecting the weather data around the PV power plant.

A. PV Power Output Data

The PV power output data is gathered from the power
conditioning system (PCS) that is installed in the PV power
plant. To get the data from PCS, an IoT platform is developed,
as explained in [13]. The PV power output is sampled every
hour and directly stored in the database. This data records
how many kWh the PV power plant is generating every hour.
Hence, the collected data from the PCS is increment data,
where the PV power output is always increasing over time.
The data collection was performed from January 1, 2021, to
December 31, 2021, with a total of 8,760 data points collected.

B. Weather Data

At the time of the experiment, the observed PV power plant
didn’t have any weather stations. To provide the weather data,
data from meteorological agencies is utilized. The weather data
is collected from the meteorological agency’s website, where
only recorded weather data in the specific area of the PV power
plant is utilized. The collected dataset has a sampling time of
1 hour and 8,760 data points. The collected weather data has
10 features, such as temperature, precipitation, wind speed,
wind direction, humidity, daylight, solar radiation, snowfall,
total cloud cover, and ground temperature.

III. METHODOLOGY

This section provides an explanation of the data preprocess-
ing to make the data ready to be fed into the models for the
learning process. Moreover, an explanation of each model’s
working mechanism is also provided in this section.

A. Data Preprocessing

To make the model easier to learn about the data, proper
data preprocessing is implemented. There are two parts to the
preprocessing: scaling and feature selection. First, the scaling
ensures that all data are in the same value range. In this work,
minmax scaling is utilized to rescale the data into values
between -1 and 1. The formula for minmax scaling is as
follows:

Xscaled =
Xdata − (−1)

1 − (−1)
(1)

Then, since the features of weather data are too many, we
need to eliminate them to reduce the computational complex-
ity. The feature elimination is based on the feature selection
procedure, where only features that have a high correlation
to the PV power output are utilized. In this work, Pearson’s
correlation coefficient is utilized to calculate the correlation
between each weather feature and PV power output. The
equation for Pearson’s correlation is as follows:

r =
Σ(xi − x̂)(yi − ŷ)√

Σ(xi − x̂)2Σ(yi − ŷ)2
(2)

From the calculation, of the 10 weather data features, only
3 have a high correlation with the PV power output. The three
features are solar radiation, ground temperature, and sunlight
periods. Therefore, the other 7 features are eliminated, and
only 3 features are utilized as input for the models to learn.

B. RNN Model

In this work, a simple RNN model is considered, where the
architecture of the model follows the description in [14]. The
RNN is using the simplest form, where it has a vanishing or
exploding gradient problem.

C. LSTM Model

The LSTM is an improvement from the simple RNN model.
The vanishing gradient problem is solved in the LSTM model
due to some modifications in the network architecture. We
develop the LSTM architecture in this work, following the
explanation in [15].

D. BiLSTM Model

In [16], BiLSTM is proposed and aims to improve long-term
dependency performance by utilizing forward and backward
directions. The BiLSTM uses two LSTM models that are
combined into one layer, where one LSTM model acts as the
forward layer while the other LSTM acts as the backward
layer.

E. ConvLSTM Model

ConvLSTM is an improvement of LSTM, as explained in
[17]. In ConvLSTM, a convolutional layer is utilized to extract
the spatial information contained in the input data. Moreover,
the matrix multiplication that is contained in LSTM is replaced
with a convolution operation.



F. LSTM-BNN Model

The LSTM-BNN model is a hybrid of the LSTM and
BNN models, where the LSTM acts to extract the important
features contained in the data while the BNN performs the
value prediction [18]. The LSTM-BNN model consists of two
models and can be expressed as the following equations: The
LSTM part has the same equation as in the regular LSTM
model, where the equation for the output LSTM part is as
follows:

yLSTMout(t) = σ(WyLSTMout,jj(t) + byLSTMout
) (3)

Then, the output from the LSTM model is used as input for
the BNN part; the equation is as follows:

f(x) = σ(v0 + ΣJ
j=1vjk × σ(w0 + ΣI

i=1wijyLSTMout)) (4)

IV. IMPLEMENTATION

A. Training Settings

The model training process is performed using Python code
with the help of the Tensorflow libraries. The computation
processes in this work utilize a computer with the following
configuration: an Intel Xeon Silver 4210R processor, 128 GB
of memory, an RTX 3090 GPU, and the Windows 11 operating
system. To evaluate the model’s performance, five types of
evaluation metrics are utilized, such as mean square error
(MSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and coefficient of determination (R2). The
input data is batched into 16 batches and converted into a
sliding window format with an input window length of 24
and target data of 24, representing 24-hour forecasting. Then,
the training dataset is split into 80% for training and 20% for
validation.

Additionally, a learning rate of 1e-5 is applied when training
with the ADAM solver selected as the optimization algorithm.
The activation function is using Tanh because it outputs data
with a value of -1 to 1, which fits with the preprocessing
applied to the data. All models are trained with an epoch of
200.

B. Prediction Results

After training the models with the training data, we test
them using separate testing data that differs from the training
data. All models are tasked with predicting the 24-hour PV
power output based on the previous day’s weather data. Fig. 1
shows the prediction results from all models. It is clear that
the prediction results from LSTM-BNN produce a closer value
to the ground truth compared to other models. The LSTM-
BNN clearly performs better than other models. However, the
LSTM-BNN fails to predict correctly when the ground truth
value is approaching zero. The other models, such as LSTM,
RNN, BiLSTM, and ConvLSTM, are able to better predict
when the ground truth is approaching zero. However, when
the ground truth is more than zero, between hours 7 and 16,
the LSTM, RNN, BiLSTM, and ConvLSTM cannot produce
prediction values that close to the ground truth.

Fig. 1. Prediction results from all models.

The results shown in Fig. 1 are consistent with the eval-
uation metrics values that were gathered after the training.
The evaluation metrics value is shown in Tab. I, which
shows the evaluation metrics for all models. The LSTM-BNN
outperforms other models by having the best metrics compared
to other models. The small values of MSE and MAE prove
that the error between the ground truth and prediction value
is small. Meanwhile, the R2 value approaching 1 shows that
the prediction value has a pattern that is similar to the ground
truth. Hence, in this work, the LSTM-BNN works better than
other models when used for generating a 24-hour-ahead PV
power output forecast using the weather data.

TABLE I
EVALUATION METRICS FROM ALL MODELS

Model MSE MAE MAPE R2
RNN 0.0241 0.1019 2.3585 0.4488

LSTM 0.0479 0.1167 36.5830 0.1792
BiLSTM 0.0436 0.1096 14.3012 0.4071

ConvLSTM 0.0475 0.1177 22.4477 0.4199
LSTM-BNN 0.0082 0.0847 0.5299 0.5602

V. CONCLUSION

The volatility in PV power output is a huge problem when
adopting PV power plants in power grid systems. Forecasting
the PV power output using deep learning emerges as a solution
to the uncertainty when dealing with PV power plants. In this
work, it is shown that the PV power output can be forecasted
by using the historical weather data of the PV power plant as
the input for the deep learning models. Several AI models
can be employed to perform the forecasts, and based on



the implementation results, the LSTM-BNN model performs
better than other models when forecasting the PV power output
for 24 hours ahead.
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