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Abstract—As unexpected disasters increase, the number of
casualties and economic damages are increasing. Accordingly,
efforts to collect and process data have been made to predict
and respond to disasters. However, because the data collected
from a certain disaster is enormous and diverse, it is difficult
to identify an exact disaster type and its situations at the early
stage of a disaster. To that end, in this paper, we first classify
disasters into six categories according to their characteristics and
extend our ontology-based temporal knowledge graphs to contain
these characteristics. Finally, to detect a disaster from temporal
knowledge graphs, Graph Neural Networks (GNN) or other
deep learning techniques can be useful. For the evaluation, we
selected four disasters belonging to six categories and constructed
temporal knowledge graphs for each disaster. Then, to see how
quickly a disaster can be detected from the constructed graphs,
we tested three GNN models, including Graph Convolutional Net-
work (GCN), SageConv, and Graph Attention Network (GAT).
Our experimental results show that temporal disaster knowledge
graphs can accurately represent the characteristics of various
disasters, enabling the detection of disasters from heterogeneous
data collected at disaster sites.

Index Terms—temporal knowledge graphs, disaster classifica-
tion, graph neural networks

I. INTRODUCTION

Disasters cause damage to life or property due to changes
in natural phenomena or artificial accidents. Recently, various
unpredictable disasters have occurred frequently due to climate
change, and we are quite vulnerable to them [1]. Although we
can predict such disasters through scientific analysis, they are
typically unpredictable, which makes it difficult to respond
quickly or evacuate when disaster strikes [2]. Therefore, a
disaster management system’s importance is emphasized to
respond as quickly as possible and minimize damage when a
disaster occurs. Despite the massive amount of disaster data
collected, there is a lack of knowledge sharing, making it
challenging to manage the data comprehensively [3].

Therefore, there is a growing attempt to use knowledge
graphs to monitor disasters in real time and organically in-
tegrate and analyze heterogeneous data [4]. Ontology-based
knowledge graphs make it easier to reuse data by exposing
the links between multiple sources of information [5]. We can
combine machine learning or deep learning methods with these
ontologies to derive additional knowledge. In addition, since
each disaster has different characteristics, it is necessary to

differentiate the data collection type or the analysis method
according to the ontology structure.

In this paper, we classify disasters into six categories ac-
cording to multiple disaster attributes. In addition, we generate
Temporal Knowledge Graphs (TKGs) of each type of disaster
and finally evaluate the previously trained GNN models.
Through the generated TKGs, we can visualize the patterns of
disaster changes and identify which data types are prominent
in disasters. Depending on the evaluation results, it is possible
to reconsider the data type to collect for each disaster category.

II. RELATED WORK

There is an increasing number of studies to find disaster
trends to manage and predict disasters [6]. These studies often
focus on specific disasters. However, it is necessary to manage
and analyze disasters according to their types because each
disaster has its own characteristics. This paper shows the
methods to detect such messages for unknown disasters, which
include both natural disasters and artificial disasters [7]. It uses
classification methods to identify reports, including potential
emergencies. In addition to this data classification, it’s critical
to identify the disaster situation with the relevant data.

Although some factors can trigger disasters, it is frequently
challenging to respond quickly because they often occur
unexpectedly. When these unpredictable disasters occur, social
media has become an important communication tool [8]. This
paper analyzes the selected message streams from social media
to acquire situational awareness and quantify the impact of
disasters. However, due to the massive volume of data shared
on social media, analyzing messages in disaster situations
takes time and effort.

III. DIVERSE DISASTERS

This section addresses the classification of disasters accord-
ing to their characteristics. In addition, we enumerate the
disasters corresponding to each category and represent the
relationship between disasters with a knowledge graph.

A. Disaster Classification

Generally, Federal Emergency Management Agency
(FEMA) classifies disasters as natural(e.g., earthquakes,
typhoons, floods, etc.) or technological hazards(e.g., materials



Fig. 1. Diverse Disaster

incidents, chemical emergencies, etc.) [9]. However, disasters
within the classified group need to be reclassified regarding
disaster management since each has different characteristics.
We classify disasters into 6 categories based on predictability,
temporal features, and spatial features. Figure 1 shows the
disaster classification represented with a knowledge graph.

We classify disasters into unpredictable disasters, pre-
dictable disasters, short-term disasters, long-term disasters,
localized disasters, and large-scale disasters. According to the
figure, ‘kko:Earthquake’ is classified into ‘:Unpredictable Dis-
asters’, ‘:Short-term Disasters’, and ‘:Large-scale Disasters’.

Unpredictable Disasters: Unpredictable disasters are in-
creasing due to rapid climate change. Such disasters cannot
be prepared in advance, making it difficult to respond imme-
diately. When a disaster strikes unexpectedly, many people
post on social media about the damaged situation or their
feelings, such as uncertainty, surprise, or fear. It indicates that
social media will play a significant role in judging and ana-
lyzing disaster situations. Unpredictable disasters include road
accidents, fires, wildfires, lightning, earthquakes, blackouts,
collapses, and flooding.

Predictable Disasters: In contrast to unpredictable disas-
ters, some disasters are predictable through scientific analysis.
For example, even though particulates, heat waves, rain-
storms, and typhoons can be predicted in advance, they can
cause severe damage because of their unpredictable behaviors.
Typhoon-induced collapse and rainstorm-induced flooding are
examples of such situations.

Short-term Disasters: Short-term disasters represent events
occurring over a short period, such as road accidents, fires,
lightning, and collapses, and they are considered unpredictable

disasters. Because they occur in a short time, there are only a
few witnesses to the disasters. As a result, social data is rarely
generated in these cases.

Long-term Disasters Long-term disasters include events
occurring over a relatively long period, such as particulates,
heat waves, typhoons, and flooding. Because such long-term
disasters have particular patterns, they are often predictable.
Even though we try to predict and prepare for these disasters,
they often cause huge damage because of their inevitable na-
ture. Therefore, people constantly have relevant conversations
over social media before, during, and after a disaster.

Local Disasters: Disasters such as road accidents, fires,
collapses, and flooding are classified as localized disasters
because they have relatively limited impacts on areas. How-
ever, the fact that the damage area is limited does not imply
that the amount of damage is minor. Instead, many casualties
may occur since the impacted areas tend to be close to
residential areas. As a result, it is important to collect social
data containing information about sudden changes to detect
such disasters early.

Large-scale Disasters: Large-scale disasters include par-
ticulates, heat waves, typhoons, earthquakes, and wildfires. In
these cases, the amount of damage is enormous and continues
for a long time, as the affected areas are wide. As a result,
we need to collect data containing both sudden changes and
information about the damages people suffered during the
early stages of the disaster. Based on such information, it
is possible to accurately predict potential damage due to the
disaster.



IV. TEMPORAL DISASTER KNOWLEDGE GRAPHS

This section briefly describes the designed structure of the
TKGs. We selected four disasters (i.e., earthquake, blackout,
typhoon, and fire) that occurred in 2023 according to the
disaster categories. Then, we generated TKGs with SNS data
and public data to show how each disaster TKG is changed
to a specific pattern over time.

A. Graph Structure

TKG is a knowledge graph that has a set of facts and
information or knowledge dependent on time [10]. In our prior
work, we designed a disaster knowledge graph structure to
represent the relationship between heterogeneous disaster data
[11]. Figure 2 shows the structure of the disaster knowledge
graph, especially earthquakes. When a disaster occurs, various
types of data are generated. This graph structure has ’:So-
cial Data’, ’:Public Data’, ’:News Data’, and ’:Sensor Data’
as types of ’:Data’, which are expressed as relationships
’rdfs:subClassOf ’. Depending on the disaster’s type, we can
expect numerous kinds of data to be generated. Each type of
disaster is likely to produce distinct data, and some data may
contain more meaningful information than others.

Fig. 2. The structure of a disaster knowledge graph

B. Case Studies

We chose the following four disasters as case studies to
analyze the TKGs changing patterns by disaster category. The
structure of the graph follows the structure of the proposed
disaster knowledge graph.

Earthquake: Earthquakes are classified as unpredictable
disasters, short-term disasters, and large-scale disasters. Fig-
ure 3 shows 1-minute interval TKGs of an earthquake that
occurred on November 30, 2023, around 04:55 a.m. As shown
in the figure, at time (c), the number of nodes in the Twitter
sub-graph increases rapidly. In addition, an emergency alert
message was issued in time (c), represented by a sub-graph
with a blue node on the right side. Many people continued
to upload situations or feelings related to the earthquake even
after the disaster had occurred, and it gradually decreased.

Blackout: Blackouts are classified as unpredictable disas-
ters. The duration of time and the range of areas that occur
may vary depending on the situation. Figure 4 shows TKGs
of a blackout that occurred on December 6, 2023, around

Fig. 3. TKGs with earthquake

15:37; it lasted for two hours. Many people were confused;
the traffic lights went out, and the elevator stopped working.
From the time the blackout occurred in (d), a few people
uploaded tweets related to the outage. However, the emergency
alert message was issued at 15:54, 17 minutes after the power
outage.

Fig. 4. TKGs with blackout

Typhoon: Typhoons are classified as predictable disasters,
long-term disasters, and large-scale disasters. The following
figure 5 shows the TKGs of Typhoon Khanun, which landed
inland on August 10th, 2023, around 9:20 a.m. Typhoons
affect many people even before they impact inland since heavy
rains often accompany them. Therefore, we frequently have
conversations about preparation on Twitter both before and
after the typhoon comes. In addition, the government issues
disaster alert messages frequently according to the typhoon’s
expected path. Typhoons typically cause significant damage
due to their vast size and duration.

Fig. 5. TKGs with typhoon

Fire: Fires are classified as unpredictable disasters, short-
term disasters, and localized disasters. A fire can divide into
a forest fire depending on where it occurs or can be derived
from car accidents. Figure 6 shows the TKGs of fires caused
by traffic accidents on the highway. It took approximately
thirty minutes to extinguish, and it was a small-scale accident
in which no disaster alert message was issued. Only a few
witnesses shared images from the site and tweets about what



happened on Twitter. The fire-related tweet generated at (c)
before the event contains content related to the fire at another
location. Furthermore, witnesses uploaded tweets about the
event 16 minutes later at (j).

Fig. 6. TKGs with fire

V. APPLYING GNN MODELS TO TKGS

We apply three GNN models, including GCN, SageConv,
and GAT, primarily used to capture and analyze local and
global information in time series digraphs. Then, to extract
the features of each node and edge of TKG, we use degree
centrality values, keyword vectors, and large language models.
This section describes the datasets collected for the model
training and how to assign the labels. In addition, we show
disaster detection results using those models and examine
which disaster patterns enable early detection.

A. Dataset and Labels

In our prior work, we trained GNN models to detect the
occurrence of disasters [12]. We selected 50 earthquakes for
the dataset and generated TKGs for 2 hours at 1-minute
intervals for each disaster. For model training, we assigned
labels of ’non eq’, ’eq’, and ’after eq’ to each digraph, which
follows the structure of TKG.

B. Disaster Detection Results

We evaluate whether various types of disasters can be de-
tected using GNN models trained with 50 earthquake datasets.
The dataset collected for model training includes social data
and public data. We assess its applicability to other disasters.
The following Table I shows the disaster detection results of
the four disasters.

TABLE I
DISASTER DETECTION RESULTS WITH VARIOUS DISASTERS

GCN SageConv GAT

Earthquake Detected in 1 min Detected in 1 min Detected in 1 min
Blackout Detected in 2 mins Detected in 1 min Detected in 2 min
Typhoon Detected sporadically Detected sporadically Not detected
Fire Rarely detected Rarely detected Not detected

All three models predicted the occurrence of the earthquake
within a minute, and the blackout, which showed similar
Twitter upload patterns, detected the event within two minutes.
However, typhoon-related tweets were uploaded for a long
time; even before the occurrence, the disaster was detected
sporadically. In addition, localized disasters such as fires are
rarely detected or tend not to be detected.

VI. CONCLUSION AND FUTURE WORK

In this paper, to detect the occurrence of various types of
disasters, we first classify diverse disasters into six disaster
categories according to their characteristics. Then, we use
temporal knowledge graphs to represent disaster patterns that
determine disaster categories. For the evaluation, we generated
temporal knowledge graphs for four disasters and analyzed
their change patterns to see how effectively GNN models
can identify disaster occurrences with knowledge graphs. The
detection result shows different data types can capture different
disaster characteristics, which affect the disaster detection
ability. Therefore, it is important to collect appropriate data
representing the characteristics of a disaster. For future work,
we will further evaluate which data type is crucial in a
specific disaster and design a new graph neural network model.
More accurate disaster detection will be possible by collecting
additional data suitable for the characteristics of the disasters.
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