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Abstract—A tethering market is a system concept in which
users share the cellular bandwidth of a user by using a tethering
function. In this market, the user (tethering provider) can provide
his/her own bandwidth to other users (tethering users), and the
tethering users defray some of the costs paid by the tethering
provider to the cellular network. Lee et al. derived the users’
share of the cost that maximizes the sum of each user’ s
satisfaction in the tethering market. However, the maximized total
satisfaction cannot guarantee that all users will be satisfied with
their share of the cost. In other words, some users might have
some excess. The existence of users having such an excess may
lead to the collapse of the tethering market. In this paper, we
derive the optimal cost share, with which all tethering users
are satisfied. Moreover, the conventional tethering market model
assumes that all tethering users select a tethering connection
instead of a cellular connection. However, if the cellular charges
are not very high or if the overhead of the tethering market
increases, tethering users will choose a cellular connection instead
of a tethering connection. Therefore, a tethering market requires
the pricing boundary to be known so that users will know when
it is better to choose a tethering connection. In this paper, we
show the boundary that divides the parameter areas in which
the tethering/cellular connections are stably chosen.

Index Terms—The mobile tethering market, Coalitional game,
Core, Shapley value, Nucleolus

I. Introduction

Tablets and smart phones have become widespread at
companies, universities, and in homes, and there has been a
dramatic increase in the use of the Internet. These devices have
a tethering function, which allows phones or tablets to share
their Internet connections with other devices such as laptops.
The tethering function is known as “mobile hot spot”, and the
terminal with the tethering function such as a smart phone is
known as a software access point (SoftAP), which is connected
to a 3G interface and/or Wi-Fi interface [1]. Thus, users that
have a SoftAP can connect to the Internet without having to
pay money directly to the Internet service provider (ISP) or
mobile carrier.

A market model considering these tethering environments
has been proposed [2]. Fig. 1 shows this tethering market. As
shown in this figure, each terminal can connect to a different
cellular network, for example, a foreign Internet roaming
service. If the users participate in the tethering market, they
register their own information to a control server. If a user has
some available bandwidth, the user (tethering provider) can
provide his/her own bandwidth to other users (tethering users).
On the other hand, if a tethering user needs some bandwidth,
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Fig. 1. An example of tethering market [3].

the user can obtain it by paying for it. In the tethering market,
users can be either buyers or sellers depending on the situation.

For example, we assume that there are four tethering users
and one tethering provider in a tethering market as shown in
Fig. 2. In this situation, since the tethering users defray some
of the costs of the tethering provider, each tethering users’ cost
share needs to be configured by the tethering market system
appropriately. Lee et al. derived the cost share for tethering
market [2]. However, not all users are always satisfied with
the derived shared cost because this cost maximize the sum
of each user satisfaction [3].

Moreover, this tethering market model [2] assumes that
all tethering users select a tethering connection instead of a
cellular connection. However, if the cellular charges are not
very high or if the overhead of the tethering market increases,
tethering users will choose a cellular connection instead of
a tethering connection. Therefore, a tethering market requires
the pricing boundary to be known so that users will know
when it is better to choose a tethering connection. We call the
pricing boundary the tethering choice boundary.

Game theory is a very powerful tool that utilizes human
behavior [4] and can be used to solve these problems. There
has been a lot of research on using game theory on networks
of human behavior [5]– [17]. However, almost no researches
of game theory have assumed a tethering environment [7]–
[17], and the results of the previous research using game
theory to deal with tethering are significantly limited because



this research models tethering behavior as non-cooperative
games [5] [6] but does not consider cost sharing. The cost
sharing is analyzed by cooperative game theory [18]– [22].
However, these cost sharing methods have not been considered
in tethering environments.

From the above discussion, we can conclude that we need
to analyze two major problems in the tethering environment.
The main contributions of this paper are as follows.

• Modeling the cost sharing of tethering using cooperative
game theory.

– Proposing our tethering model by using cooperative
game and revealing the condition for existence of
imputation in Sec. II.

– Revealing that the existence of a set of optimal shared
costs considering each user’s satisfaction (the core,
the Shapley value, and the nucleolus) in Sec. III.

• Showing the boundary that divides the parameter areas in
which tethering/cellular connections are stably chosen.

– Revealing that the tethering choice boundary is a
linear function of the price for cellular provider when
total overhead of tethering network changes in Sec.
IV.

This paper is organized as follows. Section 2 describes
related studies on using game theory to study. Section 3
preliminarily explains the coalitional game. Section 4 presents
our model using coalitional game theory and Section III shows
the optical shared cost. Moreover, we show the boundary of
the tethering choose area in Section IV. Section V shows the
numerical results and concludes the paper.

II. Our proposed tethering game

A. System model

This system assumes the tethering market [2]. We assume
that each user decides whether the user connects to subscribe
to a cellular network or tethering market system. All users 𝑁 =

{1, ..., 𝑛} can connect to a cellular network that has bandwidth
𝐵, but each user 𝑖 ∈ 𝑁 pays different costs 𝑐𝑐

𝑖
for the cellular
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Fig. 2. Problems of the tethering market.

network because each user has a different service provider.
This payment costs is changed in following order:

𝑐𝑐1 ≥ 𝑐𝑐2 ≥, ..., ≥ 𝑐𝑐𝑛−1 ≥ 𝑐𝑐𝑛 ≥ 𝑐𝑐0 := 0. (1)

When some users hope to connect to a Wi-Fi network by
using the tethering market, they form a tethering coalitional
group, which is composed of users who want to connect to the
tethering market. Each user in a tethering coalitional group
connects to a control server. Then each user registers the
request information for the tethering market system, such as
cellular network bandwidth 𝐵 and the cost 𝑐𝑐

𝑖
of the plan to

pay to the provider [2].
Based on the request information, the optimal tethering

provider in the tethering coalitional group is selected. This
optimal tethering provider subscribes the cellular provider with
the smallest cost 𝑐𝑐𝑛. The other users play as the tethering users.
In tethering market, all users share the tethering provider’s cost
𝑐𝑐𝑛.

In order to achieve this tethering market system, we also
need to derive the sharing cost 𝑐𝑡

𝑖
that a user 𝑖 actually pays

for the tethering market. This cost 𝑐𝑡
𝑖

is composed of the two
types of costs 𝑐𝑡 ,𝑏

𝑖
and 𝑐𝑡 ,𝑠

𝑖
as follows:

𝑐𝑡𝑖 = 𝑐
𝑡 ,𝑏
𝑖

+ 𝑐𝑡 ,𝑠
𝑖
. (2)

The former is the cost that the user can pay for the obtained
bandwidth, and the latter is the cost that all users can pay
under considering each user’s value.

Denoting the number of the tethering coalitional group 𝑆 as
𝑠, we assume that each user can obtain the same bandwidth
𝐵
𝑠

as shown in Fig. 3. Here, let 𝛼 be the coefficient to change
from 𝐵 to cost, so each tethering user or tethering provider
pays the following payment:

𝑐
𝑡 ,𝑏
𝑖

=
𝛼𝐵

𝑠
. (3)

On the other hand, 𝑐𝑡 ,𝑠
𝑖

is decided by each user’s value. Since
the user will pay different payment cost 𝑐𝑐

𝑖
even if the cellular

bandwidth of all users is 𝐵, we assume that 𝑐𝑡 ,𝑠
𝑖

depends on
𝑐𝑐
𝑖
. In this situation, we need to derive the appropriate 𝑐

𝑡 ,𝑠
𝑖

which all users satisfied based on 𝑐𝑐
𝑖
. In general, it is difficult

to derive the appropriate sharing cost which all users satisfied
when all users have the different value. However, this cost
sharing problem can apply to coalitional game theory. By using
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Fig. 3. System model for the tethering market (When 𝑁 = {1, 2, 3}). In this
situation, all users share 𝑐𝑐3 .



coalitional game theory, 𝑐𝑡 ,𝑠
𝑖

which all users are satisfied can
be derived as imputation of game theory. In this paper, we
derive the imputation 𝑐𝑡 ,𝑠

𝑖
which all users are satisfied by using

coalitional game.
A cost sharing method for the coalitional game has been

proposed [21] [22]. However, these coalitional games assumed
that the number of sellers and buyers are fixed. In our tethering
market method, the number of sellers and buyers are not
fixed. Thus, we cannot apply these coalitional methods to our
tethering market method. In the next subsection, we newly
define our tethering market system by using a coalitional game.

B. Proposed tethering game
Let (𝑁, 𝑣) be the proposed tethering game. Let 𝑁 denote

the set of players 𝑁 = {1, ..., 𝑛}. A subset of 𝑁 is defined as
a coalition 𝑆 (⊂ 𝑁). Let 𝑣 : 2𝑁 → R be the characteristic
function. We define Eq. (1) to be the cost 𝑐𝑐

𝑖
payable to the

cellular network.
Moreover, the total overhead between tethering users in-

creases non-linearly as the number of connecting tethering
users increases [23]– [25]. Thus, we assume that the overhead
ℎ𝑠𝑝 , ℎ > 0, 𝑝 > 0 is non-linear. Note that ℎ is the overhead
coefficient. Thus, we can derive the characteristic function as
follows:

𝑣(𝑆) = 𝛼(𝐵 − ℎ𝑠𝑝) − min
𝑖∈𝑆

𝑐𝑐𝑖 , ∅ ≠ 𝑆 ⊆ 𝑁. (4)

We assume that the characteristic function of the cost [26],

𝑐(𝑆) := −𝑣(𝑆), 𝑐 : 2𝑁 → R. (5)

As mentioned in Subsec. II-A, we can derive 𝑐
𝑡 ,𝑠
𝑖

as the
imputation in a coalitional game. Thus, 𝑐𝑡 ,𝑠

𝑖
can be derived

by the imputation based on Eq. (4). Moreover, we need to
confirm that our tethering game satisfies the condition of a
grand coalition in order to derive the imputation. In the next
subsection, we derive the condition in which all users choose
the tethering market (grand coalition) without an overhead
(ℎ = 0).

C. Condition for forming a grand coalition without overhead
To derive the imputation, a grand coalition must hold

together in our tethering game. For a grand coalition to be
true in this game, the characteristic function, Eq. (4), must
satisfy superadditivity. However, Eq. (4) does not always
satisfy superadditivity. Thus, here, we describe the condition
in which the characteristic function satisfies superadditivity.

As shown in Eq. (1), 𝑐𝑐
𝑖

means the payment cost of user 𝑖
when the user chooses the cellular network. This 𝑐𝑐𝑛 is smallest
in {𝑐𝑐1 , ..., 𝑐

𝑐
𝑛}. If the user 𝑛 chooses the tethering network not

the cellular network, the other users {1, ..., 𝑛 − 1} also choose
the tethering network. The condition is as follows.

𝛼𝐵 ≤ 𝑐𝑐𝑛. (6)

Eq. (6) means that user 𝑛 is not satisfied with the cellular
cost 𝑐𝑐𝑛 because the cost 𝛼𝐵 of the network bandwidth support-
ing the user 𝑛 is greater than or equal to 𝑐𝑐𝑛. In this situation,
we can consider that all users select the tethering network.

Now, let us consider a system without an overhead, in which
the characteristic function is as follows:

𝑣(𝑆) = 𝛼𝐵 − min
𝑖∈𝑆

𝑐𝑐𝑖 , ∅ ≠ 𝑆 ⊆ 𝑁. (7)

Here, this characteristic function of Eq. (7) means that the
following inequality holds:

𝑣(𝑁) ≥ 𝑣(𝑆) ∅ ≠ 𝑆 ⊆ 𝑁. (8)

In this situation, Eq. (7) assuming Eq. (6) satisfies the super-
additivity, and the grand coalition in which all users choose
the tethering connection holds in Eq. (6). Thus, the inequality
of Eq. (6) is the condition of the grand coalition. As explained
below, we can narrow this condition 𝛼𝐵 ≤ 𝑐𝑛 by using proof
4.1.

Here, in this assumption of inequality, since 𝑣(𝑆) means
the sum of benefits, one might feel it is strange that the sum
of benefits is a negative number. Actually, this characteristic
function of the tethering game includes the utility of all players
by connecting them to a network. However, this total utility in
𝑣(𝑆) can be omitted by using the strategic equivalence [8] of
cooperative games. Let 𝛽𝑖 be the utility of player 𝑖 when the
player can connect to a network. The total utility of all players
obtained by connecting them to a network is the sum of 𝛽𝑖 .

This strategic equivalence means that two games (𝑁, 𝑣) and
(𝑁, 𝑣′) are equivalent if the following condition regarding the
characteristic function 𝑣 and 𝑣′ is satisfied [27]. Let 𝛿 be a
positive real number and let 𝜷 = (𝛽1, 𝛽2, · · · , 𝛽𝑛) be a vector
of real numbers. For all coalitions 𝑆 ⊆ 𝑁 , we have

𝑣′ (𝑆) = 𝛿𝑣(𝑆) +
∑︁
𝑖∈𝑆

𝛽𝑖. (9)

Parameter 𝛿 is common in coalition 𝑆 and matches both
characteristic functions for the assumption of the transferable
utilities [27]. Thus, the characteristic function with the total
utility for network connection is as follows:

𝑣(𝑆) =
∑︁
𝑖∈𝑆

𝛽𝑖 + 𝛼𝐵 − min
𝑖∈𝑆

𝑐𝑐𝑖 , ∅ ≠ 𝑆 ⊆ 𝑁.

Note that we use the characteristic function omitting the total
utility of the network connection.

We show that the superadditivity holds with the following
condition:

Theorem II.1. A tethering game (𝑁, 𝑣) in which the character-
istic function 𝑣(𝑆) is equal to 𝛼𝐵 −min𝑖∈𝑆 𝑐𝑐𝑖 is superadditive
when the following equation holds:

𝛼𝐵 ≤ 𝑐𝑐𝑛−1. (10)

Theorem II.1 shows that a condition of superadditive is
sufficient to check only the difference between the cost for
network bandwidth 𝛼𝐵 and the cost of user 𝑛 − 1 for cellular
network 𝑐𝑐

𝑛−1. We confirmed that our tethering model satisfies
the grand coalition in Theorem II.1. The next subsection
describes a closed form solution of some imputations — core,
Shapley value, and nucleolus — of the tethering game.



III. Cost sharing considering each user satisfaction
A. The core of our tethering game

The airport game [28] [29] is similar to the tethering
game. The characteristic function 𝑣air (𝑆) of the airport game
is the maximum cost 𝑣air (𝑆) = −max𝑖∈𝑆 𝑐𝑖 . In general, a
convex game which is characterized has a unique stable set
of imputations that coincides with its core [30]. The airport
game is a convex game [28], but the tethering game is not for
the following reasons.

Theorem III.1. The tethering game (𝑁, 𝑣) when the charac-
teristic function is 𝑣(𝑆) = 𝛼𝐵−min𝑖∈𝑆 𝑐𝑖 is not a convex game.

However, we can prove that the core is not empty by using
group rationality and coalitional rationality.

Theorem III.2. The core of the tethering game (𝑁, 𝑣) when
the characteristic function 𝑣(𝑆) = 𝛼𝐵−min𝑖∈𝑆 𝑐𝑖 is not empty.

The existence of the core means the existence of the
imputation with which all users are satisfied. However, the core
is not an optimal solution because there are some imputations
satisfying the core. In the next subsection, we show the
Shapley value of the tethering model. The Shapley value
can derive an imputation in accordance with the marginal
contribution of each user.

B. The Shapley value of our tethering game
The tethering game (𝑁, 𝑣) without overhead is superad-

ditive. Thus, the Shapley value satisfies the imputation 𝐼.
The Shapley value means that each player should be paid in
accordance with how valuable his/her cooperation is to the
other players [31]. Thus, the Shapley value of our tethering
model means the sharing costs according to onefs own payable
costs.

The Shapley value is characterized by four axioms by which
we can derive the Shapley value as follows.

Theorem III.3. The Shapley value 𝝓(𝑣) = (𝜙(𝑣)1, 𝜙(𝑣)2,
· · · , 𝜙(𝑣)𝑛) ∈ R𝑛 of the tethering game (𝑁, 𝑣) when the
characteristic function 𝑣(𝑆) is 𝛼𝐵−min𝑖∈𝑆 𝑐𝑖 , 𝑐0 = 0 is defined
as,

𝜙(𝑣) 𝑗 = −
𝑗∑︁

𝑖=1

− 𝛼𝐵
𝑛

+ 𝑐𝑖 − 𝑐𝑖−1

𝑛 − 𝑖 + 1
, 𝑗 ∈ 𝑁. (11)

Thus, we showed the solution of the Shapley value. In the
next subsection, we show the nucleolus of the tethering model.
The nucleolus is an efficient imputation that successively
minimizes the largest excess.

C. The nucleolus 𝜈 of our tethering game
From the definition of the nucleolus, the excess of the

nucleolus is defined as

𝑒∗ (𝑆, 𝑣) := min
𝑥∈𝐼

max
𝑆∈𝑁

(𝛼𝐵 − min
𝑖∈𝑆

𝑐𝑖 −
∑︁
𝑖∈𝑆

𝑥𝑖), ∀𝑆 ∈ 𝑁.

The nucleolus means a set of imputations that minimizes the
maximum excesses of the coalition. To derive the nucleolus,

the excesses of two coalitions are compared with the lexico-
graphic ordering [27]. When vector 𝑥 is larger than vector 𝑦
in lexicographic ordering, we have 𝑥𝑖 = 𝑦𝑖 , 𝑖 = 1, ..., 𝑘 − 1 and
𝑥𝑘 > 𝑦𝑘 in some index 𝑘 = 1, ..., 𝐾 . By using this assumption,
our tethering game can formulate the following equation.

Definition III.1. The nucleolus −𝝂 := y∗ = (𝑦∗1, 𝑦
∗
2, ..., 𝑦

∗
𝑛)

of tethering game (𝑁, 𝑣) can be defined as the following
equations:

𝑦∗1 = ... = 𝑦∗𝑛−1 =
𝑐𝑛−1 − 𝛼𝐵

𝑛
= 𝑟∗,

𝑦∗𝑛 = 𝑐𝑛 − (𝑛 − 1)𝑟∗. (12)

In general, the nucleolus is included in the core when the
core is not empty. Thus, we can derive the solution in which
all users are satisfied and the largest excess is minimized.

We have derived the existence of the core, Shapley value,
and nucleolus for the tethering model without overhead. How-
ever, there is generally a trade-off between the obtained band-
width (throughput) and the payment cost. From the viewpoint
of users, if the payment cost is low, the users will choose
the tethering connection even if their own bandwidth is small.
Thus, we should consider the relationship between overhead
and the payment cost.

In the next section, we explain the characteristic of our
tethering model with an overhead. By analyzing the model,
we assess the trade-off between bandwidth (throughput) and
costs.

IV. Existence of superadditivity with an overhead
This section shows the relationship between the overhead

with tethering and the payment cost for cellular provider. In
what follows, we refer to the number of elements of two coali-
tions as 𝑠, 𝑡 such that 𝑠 + 𝑡 = 𝑛, Z ∋ 𝑠 ≥ 1, Z ∋ 𝑡 ≥ 1, 𝑛 ∈ Z.
In the first step, we proof the following Lemma.

Lemma IV.1. When 𝑝 > 1, the following 𝑠 and 𝑡 maximize
𝑛𝑝 − 𝑠𝑝 − 𝑡 𝑝:

𝑠 = ⌊ 𝑛
2
⌋, 𝑡 = ⌈𝑛

2
⌉ .

By using this Lemma, we can derive the relationship be-
tween the overhead and the payment cost.

Theorem IV.1. When the characteristic function 𝑣(𝑆) = 𝛼𝐵 −
𝛼ℎ𝑠𝑝 −min𝑖∈𝑆 𝑐𝑖 (𝛼 ≥ 1, 𝑝 > 1) in the tethering game (𝑁, 𝑣)
is superadditive and the cost for each user is assumed to be

𝑐𝑖 := 𝑐1 = 𝑐2 = 𝑐3, ... = 𝑐𝑛−1 = 𝜉𝑐𝑛 > 𝑐0 = 0, 𝜉 > 1,

the following inequality holds:

𝑐𝑛−1
𝛼𝐵

≥
𝑛𝑝 − (⌊ 𝑛2 ⌋

𝑝 + ⌈ 𝑛2 ⌉
𝑝)

𝑛𝑝
ℎ𝑡𝑔 + 1.

ℎ𝑡𝑔 :=
ℎ𝑛𝑝

𝐵
, 𝑤ℎ𝑒𝑟𝑒

𝑐𝑛−1
𝑐𝑛

> 1.

Moreover, we can derive the tethering choice boundary
when 0 < 𝑝 < 1.



Theorem IV.2. When the characteristic function 𝑣(𝑆) = 𝛼𝐵 −
𝛼ℎ𝑠𝑝 − min𝑖∈𝑆 𝑐𝑖 (𝛼 ≥ 1, 0 < 𝑝 < 1) in the tethering game
(𝑁, 𝑣) is superadditive and the cost for each user is assumed
to be

𝑐𝑖 := 𝑐1 =, ... = 𝑐𝑛−1 = 𝜉𝑐𝑛 > 𝑐0 = 0, 𝜉 > 1, (13)

the following inequality holds:

𝑐𝑛−1
𝛼𝐵

≥ 2𝑝 − 2
𝑛𝑝

ℎ𝑡𝑔 + 1, ℎ𝑡𝑔 =
ℎ𝑛𝑝

𝐵
, 𝑤ℎ𝑒𝑟𝑒

𝑐𝑛−1
𝑐𝑛

> 1.

Therefore, as discussed in Subsec. II-C, to check a condition
of superadditive with overheads, the cost with user 𝑛− 1 / the
cost that the user can accept to pay for network bandwidth
ratio 𝑐𝑛−1

𝛼𝐵
is a criterion value in Theorem IV.1 and IV.2.

V. Numerical results
A. The core, The Shapley value and the nucleolus

We numerically solved our tethering model. We assumed
that there were three players N = {1, 2, 3} and c = (𝑐1, 𝑐2, 𝑐3).
Let c be the cost for each player per day. First, we set 𝛼 = 0
to confirm a basic characteristic. Note that 𝑐𝑎𝑙𝑙

𝑖
= 𝑐

𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦

𝑖
.

Let 𝑒𝝓 (𝑆, 𝑣) be the maximum excess of the Shapley value and
𝑒∗ (𝑆, 𝑣) be the maximum excess of the nucleolus.

As mentioned in Subsec. II-A, 𝑐𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦
𝑖

can be derived by
imputation of 𝑣(𝑆). Note that the shared cost in 𝝓 and 𝝂 is
minus according to Eq. (5). The Shapley value 𝝓 = (𝜙1, 𝜙2, 𝜙3)
was allocated in accordance with each user’s contribution
as shown in Subsec. III-B. In this case, the imputation was
determined by each user’s cost to be paid. For example, when
c = (30, 15, 12)[dollar], player 3 has the lowest cost. In this
situation, the Shapley value 𝝓 = (−10,−25, 5) and the nucleo-
lus 𝝂 = (−5,−5,−2). Thus, if all players cooperate in tethering
and share the cost in accordance with the Shapley value, player
3 receives 5[dollar] from Players 1 and 2. Players 1 and 2 pay
in accordance with 𝜙1 and 𝜙2. Since 𝑒𝝓 (𝑆, 𝑣) = −5(< 0), the
nucleolus is in the core.

Moreover, we set 𝛼 = 2 and 𝐵 = 6, and we calculate the cost
𝑐𝑎𝑙𝑙
𝑖

= 𝑐𝑏𝑎𝑛𝑑
𝑖

+ 𝑐𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦
𝑖

when c = (30, 15, 12). In this situation,
if the tethering users and tethering provider obtain the same
bandwidth, 𝑐𝑏𝑎𝑛𝑑

𝑖
= 4 because 𝑐𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦

𝑖
can be derived by the

Shapley value and the nucleolus. The Shapley value and the
nucleolus are 𝝓 = (−8.67,−0.67, 9.33) and 𝝂 = (−2,−2, 4),
respectively. Thus, c𝑎𝑙𝑙 = (−12.67,−4.67, 5.33) when 𝑐𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦

𝑖

is calculated by 𝝓, and c𝑎𝑙𝑙 = (−6,−6, 0) when 𝑐
𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦

𝑖
is

calculated by 𝝂. Note that the cost for the tethering provider
is 𝑐𝑛 = 12 in both situations.

Fig. 4 shows the limitation of stable solutions in every
coalition. Each vertex of the triangle means the imputation
with one coalition, and the height of the triangle means the
coalitional value of a grand coalition 𝑣(𝑁). Note that we use
zero-normalized game [32] to form strategic equivalence for
this figure in Eq. (9). The zero-normalized game (𝑁, 𝑣0) is
defined by the following equation.

𝑣0 (𝑆) = 𝑣(𝑆) −
∑︁
𝑖∈𝑆

𝑣({𝑖}), ∀𝑆 ⊆ 𝑁. (14)

x2+x3 =18

x1+x3 =60x1+x2 =60

(x1, x2, x3 )=(78,0,0)

(x1, x2, x3 )=(0,78,0) (x1, x2, x3 )=(0,0,78)

... Instability on (S(1,2))

... Instability on (S(1,3))

... Instability on (S(2,3))

... Instability on (S(1,2), S(1,3))

... Core

... Nucleolus (-54, -12, -12)

... Shapley value (-40, -19, -19)

0 0 0 0

0 0

v0(N)=78

0 0 0

0 0 0 0 0 0

Fig. 4. Limitation of stable solutions in our tethering model.

When the game is a zero-normalized game, let x0 =

{𝑥0
1, 𝑥

0
2, ..., 𝑥

0
𝑛} be the imputations of players. We set 𝑛 = 3,

c = (60, 18, 12), 𝛼 = 0. By using Eq. (14), 𝑣0 (𝑁) is set to
78. Moreover, 𝑣0 (1, 2) = 𝑣0 (1, 3) = 60, and 𝑣0 (2, 3) = 18. The
area of the core is judged. As shown in Fig. 4, the Shapley
value does not include the core. Thus, if the players share the
tethering costs in accordance with the Shapley value (in other
words, if the players share the costs in accordance with the
contribution of each player), some players cannot be satisfied
by the value of cost sharing.

VI. Conclusion
In this paper, we modeled cost sharing of a mobile tethering

environment using coalitional games of cooperative game
theory. We derived the existence of a set of optimal shared
costs, which means that the tethering provider and all tethering
users are satisfied. Our quantitative study showed the boundary
at which users should choose to be tethering users or not.
Numerical results showed our derived shared costs and the
relationship between the payment cost for cellular provider
and the overhead of the tethering network.

This paper assumed that the users act reasonably, which
does not always happen in reality. In future work, we will
analyze user behavior considering bounded rationality in the
mobile tethering environment.
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