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Abstract—Electroencephalogram (EEG) signals are 

inevitably contaminated by outliers, artifacts, and noise since 

EEGs are non-invasively recorded on the scalp. Motor imagery 

(MI) based brain-computer interface (BCI) makes use of 

multivariate EEG signals, which aims at classifying MI features. 

The existence of outliers leads to a degradation of the 

classification performance of MI-based BCI (MI-BCI). Previous 

popular common spatial patterns (CSPs) based on L2-norm and 

L1-norm dispersion are sensitive to outliers in EEG signals. This 

paper presents a generalized Lp-norm based CSP (p<1) to yield 

robustness to outliers for MI-BCI. By utilizing the Lp-norm 

dispersion of the filtered EEG samples instead of L2-norm or 

L1-norm ones, the robust MI-BCI to outliers is expected. 

Through simulations using a toy dataset and public EEG BCI 

dataset, we validate the capacity of the proposed Lp-norm BCI 

(CSP-Lp) and confirm its increased robustness to outliers.  
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I. INTRODUCTION 

Brain-computer interface (BCI) provides an alternative 
way of transmitting human intentions or responses to external 
devices by interpreting the brain functional activities under 
specific environments [1]–[3]. Among the monitoring 
modalities of brain functional activities, 
electroencephalogram (EEG), which is recorded on the scalp, 
is widely used in the field of noninvasive BCI. Depending on 
the type of EEGs, there are several categories of noninvasive 
BCI models [4], [5]. Typically, motor imagery (MI), event-
related potentials (ERP) and steady-state visual evoked 
potential (SSVEP) are the most widespread noninvasive BCI 
models. Among those, the MI-based BCI (MI-BCI) utilizes 
the brain patterns in cases of the imagination of motor 
movements, which is most intuitive than others.  

The main notable patterns of EEGs while imaging motor 
movements are a decrease and an increase of alpha and beta 
band powers, which is known as event-related 
desynchronization (ERD) and event-related synchronization 
(ERS), respectively [6]. In addition, ERD and ERS are 
observed in EEG recorded from the motor cortex area of the 
scalp. Recent advances in machine learning approaches enable 
researchers to detect MI patterns with the improved 
performance [7], [8].  

To identify MI patterns from multivariate EEG signals, 
spatial filtering is usually carried out. Common spatial 
patterns (CSP) in [9], [10] has been a standard among various 
spatial filtering methods for a two-classes scenario. CSP seeks 
few spatial filters which not only maximize a variance of the 
filtered EEG signals of one class, but also minimize that of the 
other class based on the L2-norm space. Due to its promising 
performance for single-trial classification of BCI model, a 
variety of variants of CSP has been presented [11]–[14]. In 
[11], the authors have presented a regularized CSP (RCSP) by 
utilizing the Tikhonov regularization and Laplacian penalty. 
Further, other extended versions of CSP such as common 
spatio-spectral patterns (CSSP) [12], sparse CSP (SCSP) [13], 
and filter bank common spatial pattern (FBCSP) [14] have 
been introduced and shown promising results. However, when 
EEG signals are contaminated by outliers caused by eye blinks, 
head movement, and electrical noise, the L2-norm variance 
computation exaggerates outliers, which results in a 
deterioration of the performance of L2-norm based CSP 
(hereafter CSP-L2) or extended CSP- L2. 

To deal with vulnerability to outliers of CSP- L2 families, 
the robust versions of the CSP- L2 by applying L1-norm 
computation, named CSP-L1 [15] and regularized CSP-L1 
[16], have been developed. These works have exploited the 
L1-norm based dispersion instead of L2-norm based variance, 
which has yielded robustness to outliers. However, CSP-L1 
still suffer from performance degradation due to inevitable 
outliers or artifacts. Comparing to L1-norm and L2-norm, Lp-
norm (0<p<1) has rendered improved robustness against 
outliers in various signal processing applications [17], [18]. In 
[17] and [18], Lp-norm based principal component analysis 
(PCA-Lp) and linear discriminant analysis (LDA-Lp) 
demonstrated enhanced performance compared to L1-norm-
based methodologies, respectively. 

In this work, we generalized a CSP framework in order to 
restrict the outlier influence for MI-BCI by using Lp-norm 
(p<1) dispersion in cases where computing L1-norm and L2-
norm previously. The proposed Lp-norm based CSP (CSP-Lp) 
calculates the Lp-norm dispersions of filtered EEG signals 
rather than L1 and L2-norms. Thus, the proposed CSP-Lp is 
the generalization of the conventional CSP-L2 and CSP- L1. 
CSP-Lp based MI-BCI is analyzed and evaluated using a toy 
dataset and public EEG BCI dataset provided by BCI 
Competition. The experimental results demonstrate the 
capability of the proposed CSP-Lp to decode MI-BCI in cases 
where severe outliers exist. 



II. COMMON SPATIAL PATTERNS (CSPS) 

A. L2-norm based CSP (CSP-L2) 

Let 𝐗, 𝐘 ∈ ℝchannel ×sample be pre-processed EEG samples, 
the objective function of CSP-L2 is given by 

𝐽𝐿2(𝒘) =
𝒘𝑇𝑿𝑿𝑇𝒘

𝒘𝑇𝒀𝒀𝑇𝒘
=
𝒘𝑇𝑪𝑿𝒘

𝒘𝑇𝑪𝒀𝒘
=
‖𝒘𝑇𝑿‖2

2

‖𝒘𝑇𝒀‖2
2  (1) 

where 𝒘 ∈ ℝchannel  is a spatial filter of CSP, T denotes 
transpose operator, and 𝑪𝑿, 𝑪𝒚 represent the covariances of X 

and Y, respectively. Since CSP-L2 aims at obtaining few 
spatial filters that maximize variance for one class MI-BCI 
while minimizing variance for other class MI-BCI, the goal is 
to find an optimum spatial filter that maximizes the objective 
function 𝐽𝐿2(𝑤) in (1). The optimal spatial filter 𝒘 is obtained 
by solving the following generalized eigenvalue equation as 
follows as: 

𝑪𝑿𝒘 = 𝜆𝑪𝒀𝒘 (2) 

In (2), we can see that the spatial filter 𝒘 is the eigenvector 
of covariance matrices 𝑪𝑿, 𝑪𝒀. In addition, the eigenvalue 𝜆 
represents the ratio of two covariances, 𝑪𝑿  and 𝑪𝒀 . Thus, 
among the eigenvectors of the number of channels, the 
eigenvectors corresponding to the largest and the smallest 
eigenvalues are chosen as the spatial filters. For the 
classification, the variance of the logarithm of the spatial 
filtered EEG signals is used as the feature in the CSP-L2 based 
MI-BCI. 

B. L1-norm based CSP (CSP-L1) 

L2-norm is generally known to be sensitive to outliers 
since it exaggerates the effect of outliers by using the variance 
on Euclidean distance. As a solution for this issue, the L1-
norm based CSP was developed with the following objective 
function: 

𝐽𝐿1(𝒘) =
‖𝒘𝑇𝑿‖1
‖𝒘𝑇𝒀‖1

=
∑ (𝒘𝑇𝒙𝑖)
𝑚
𝑖=1

∑ (𝒘𝑇𝒚𝑗)
𝑛
𝑗=1

 (3) 

where 𝒙𝑖, 𝒚𝑗 ∈ ℝ
channel are the vectors of one sample of each 

class MI EEG data, and 𝑚 and 𝑛 are samples of each class MI 
EEG data. Unlike CSP-L2, it is not available to compute 
differential calculation in CSP-L1, so iterative algorithm is 
used. The optimized spatial filter is obtained by combining a 
spatial filter to maximize the objective function 𝐽L1(𝒘) and a 
spatial filter to maximize 1/𝐽L1(𝒘). 

 

III. PROPOSED METHOD 

A. Lp-norm based CSP (CSP-Lp) 

Although CSP-L1 has been proposed to improve 
sensitivity to outliers, it still appears to be sensitive to large 
outliers. To tackle this obstacle, we develop a novel objective 
function by using Lp-norm (0<p<1) instead of L2-norm or L1-
norm. The goal of CSP-Lp is to find an optimal spatial filter 
𝒘 that maximizes the following objective function: 

𝐽𝐿𝑃(𝒘) =
‖𝒘𝑇𝑿‖𝑃

𝑃

‖𝒘𝑇𝒀‖𝑃
𝑃 =

∑ |𝒘𝑇𝒙𝑖|
𝑃𝑚

𝑖=1

∑ |𝒘𝑇𝒚𝑗|
𝑃𝑛

𝑗=1

 (4) 

where 0 < 𝑝 < 1. 

We use a gradient ascent approach to get the maximum 
value of the objective function 𝐽L1(𝒘). First, we differentiate 
the objective function to obtain the gradient of 𝐽L1(𝒘) with 
respect to 𝒘. However, owing of the absolute value formula 
of 𝐽𝐿𝑃(𝒘), the gradient may not be clearly defined. To avoid 

this problem, we rewrite the objective function 𝐽L1(𝒘) with a 
sign function for absolute value operations. 

𝐽𝐿𝑃(𝒘) =
∑ [sgn(𝒘𝑇𝒙𝑖)𝒘

𝑇𝒙𝑖]
𝑃𝑚

𝑖=1

∑ [sgn(𝒘𝑇𝒚𝑗)𝒘
𝑇𝒚𝑗]

𝑃𝑛
𝑗=1

 (5) 

The sgn(𝑎) function yields a value of -1 or 1 depending on 
the sign of 𝑎 . The gradient of 𝐽𝐿𝑃(𝒘)  with respect to 𝒘  is 

given by 

 

For the gradient in (7) to be defined, the objective function 

𝐽𝐿𝑃(𝒘)  must satisfy two conditions, i.e., 𝒘T𝒙𝑖 ≠ 0  and 

𝒘T𝒚𝑖 ≠ 0. These two conditions are validated by singularity 
checks at the beginning of every iteration. 

The overall gradient ascent algorithm to obtain the optimal 
spatial filter of the CSP-Lp consists of 6 steps as follows as: 

1) Initialize 𝒘𝑡=0 = 𝒘(0) such that ‖𝒘‖2 = 1 

2) Singularity check 

If 𝒘T𝒙𝑖 = 0 or 𝒘T𝒚𝑖 = 0, 𝒘(𝑡) =
𝒘(𝑡)+𝜹

‖𝒘(𝑡)+𝜹‖2
 

where 𝜹 is a small valued random vector. 

3) Compute ∇𝝎 in (6) 

4) Learn 𝒘(𝑡 + 1) from 𝒘(𝑡) 

𝒘(𝑡 + 1) = 𝒘(𝑡) + 𝜇∇𝒘, where 𝜇 is a learning rate. 

5) Normalize 𝒘(𝑡) 

𝒘(𝑡) =
𝒘(𝑡)

‖𝒘(𝑡)‖2
 

6) Convergence check 

If ‖𝒘(𝑡) − 𝒘(𝑡 − 1)‖2 ≥ 𝜖, go to 2). 

Else, 𝒘∗ = 𝒘(𝑡). Iteration Stops. 

Like the CSP-L2, the features are extracted by combining 
two spatial filters that maximize and minimize the objective 
function 𝐽𝐿𝑃(𝒘). A spatial filter that minimizes the objective 

function is like getting a spatial filter that maximizes  

 

 

𝛻𝒘 =
𝜕𝐽𝐿𝑃(𝒘)

𝜕𝒘
=

A × B − C × D

E
 

A = 𝑃∑ sgn(𝒘𝑇𝒙𝑖)|𝒘
𝑇𝒙𝑖|

𝑃−1𝒙𝑖
𝑚

𝑖=1
, 

B =∑ [sgn(𝒘𝑇𝒚𝑗)𝒘
𝑇𝒚𝑗]

𝑃
𝑛

𝑗=1
, 

C =∑ [sgn(𝒘𝑇𝒙𝑖)𝒘
𝑇𝒙𝑖]

𝑃
𝑚

𝑖=1
, 

D = 𝑃∑ sgn(𝒘𝑇𝒚𝑗)|𝒘
𝑇𝒚𝑗|

𝑃−1
𝒚𝑗

𝑛

𝑗=1
, 

E = (∑ [sgn(𝒘𝑇𝒚𝑗)𝒘
𝑇𝒚𝑗]

𝑃
𝑛

𝑗=1
)

2

 

 

(6) 



B. Extension to Multiple Filters  

For CSP-L2, the number of spatial filters equals the 
number of channels of MI EEG signals and each spatial filter 
is orthogonal to each other. We utilize orthogonality to extend 
CSP-Lp into multiple spatial filters. The first spatial filter 𝒘1 
is obtained through an iterative algorithm described in the 
previous section. The second spatial filter 𝒘2 must maximize 

the objective function while satisfying the condition 𝒘1
𝐓𝒘2 =

0. We can rewrite the second spatial filter 𝒘𝟐 as following. 

𝒘2 = (𝑰𝐶 −𝒘1𝒘1
𝑻)𝜶1 (7) 

where c means the number of the channel of EEG signals, 𝑰𝐶  
and 𝜶1are c-dimensional identity matrix and c-dimensional 
coefficient vectors, respectively. Thus, the objective function 
for the second spatial filter 𝒘2 is represented as 

∑ |𝒘2
𝑇𝒙𝑖|

𝑃𝑚
𝑖=1

∑ |𝒘2
𝑇𝒚𝑗|

𝑃𝑛
𝑗=1

=
∑ |𝜶1

𝑇(𝑰𝐶 −𝒘1𝒘1
𝑻)𝒙𝑖|

𝑃𝑚
𝑖=1

∑ |𝜶1
𝑇(𝑰𝐶 −𝒘1𝒘1

𝑻)𝒚𝑗|
𝑃𝑛

𝑗=1

 (8) 

Using the first spatial filter 𝒘1, and 𝒙𝑖 and 𝒚𝑗 are MI EEG 

data, the followings are calculated 

𝒙𝑖
(2)
= (𝑰𝐶 −𝒘1𝒘1

𝑻)𝒙𝑖 

𝒚𝑗
(2)
= (𝑰𝐶 −𝒘1𝒘1

𝑻)𝒚𝑗 
(9) 

Substituting (9) into (8), we can rewrite eq. (8) as follows: 

∑ |𝜶1
𝑇𝒙𝑖

(2)
|
𝑃

𝑚
𝑖=1

∑ |𝜶1
𝑇𝒚

𝑗

(2)
|
𝑃

𝑛
𝑗=1

 (10) 

 

Finally, through the above iterative algorithm, we obtain 

𝜶1 that maximizes the objective function in (10). The second 

spatial filter 𝒘2 is obtained through 𝜶1 as (7). In general, if 

the k spatial filters 𝒘1 , 𝒘2, ⋯ ,𝒘𝑘  have been obtained, the 

(k+1)th spatial filters 𝒘𝑘+1  satisfying condition 𝒘1
𝐓𝒘𝑘+1 =

⋯ = 𝒘𝑘
𝐓𝒘𝑘+1 = 0 is obtained as follows: 

where 𝑾𝑘 is a c-dimension square matrix and consists of k 

spatial filters, ( 𝒘1, 𝒘2, ⋯ ,𝒘𝑘 ). The obtained 𝒘𝑘+1  is 

normalized as 
𝒘𝑘+1

‖𝒘𝑘+1‖𝟐
 and then padded into the 𝑾𝑘. 

 

C. Feature Extraction 

When the spatial filters obtained through maximizing and 
minimizing the objective function are represented as 
𝒘𝟏, ⋯ ,𝒘𝑛𝑥 and 𝒘𝟏

′ , ⋯ ,𝒘𝑛𝑦
′ , respectively, the feature vector 

is given by 

 

𝒇 =  

(

 
 
 
 

‖𝒘𝟏
𝑻𝒁‖

1

⋮
‖𝒘𝑛𝑥

𝑻 𝒁‖1
‖(𝒘𝟏

′ )𝑻𝒁‖1
⋮

‖(𝒘𝑛𝑦
′ )

𝑻
𝒁‖

1)

 
 
 
 

 
(12) 

 

 

IV. EXPERIMENTS 

A. Toy Dataset 

The toy dataset used for verification is two-dimensional 
data of two classes and is obtained through Gaussian random 
variance. The zero mean and covariance matrices [5, 0; 0, 0.2], 
[0.2, 0; 0, 5] are used. In addition, each class consists of 50 
samples. The outliers were added to the class 2 data. For CSP-
Lp, p = 0.75 is chosen. Fig. 1 illustrates the spatial filters in 
cases where distinct outliers exist. The dataset of class 1 and 
class 2 are represented by '+' and 'o', respectively. The solid 
lines demonstrate spatial filters when no outlier exists in class 
2 data while the dotted lines show spatial filters when outliers 
exist in class 2 data. Fig. 1. (a) illustrates the spatial filters of 
different CSPs in the case where the outlier is on (20,20) 
position. We can see that CSP-Lp is comparable to CSP-Lp 
regardless of the outlier, while the CSP-L2 filter shows a high 
sensitivity to the outlier. However, when the outlier is 
increased on (60, 60) position as shown in Fig 1. (b), both 
CSP-L2 and CSP-L1 are sensitive to the outlier, leading to 
performance degradation. On the other hand, CSP-Lp with the 
outlier shows almost a similar performance in the case where 

𝒘𝑘+1 = (𝑰𝐶 −𝑾𝑘𝑾𝑘
𝑻)𝜶𝑘 (11) 

 
(a) 

 
(b) 

Fig. 1: A 2-D toy dataset and the spatial filters using CSP-L2, CSP-L1 

and CSP-Lp. For CSP-Lp, p = 0.75 is chosen. The solid and dashed 

lines denote the spatial filters without and with outliers, respectively. (a) 

an outlier is on (20,20) position and (b) an outlier is on (60,60) position. 

 



the outlier is absent. In other words, CSP-Lp achieves 
improved robustness to outliers compared to CSP-L2 and 
CSP-L1 when severe outliers occur. 

B. EEG Dataset 

To verify the proposed CSP-Lp using the real EEG signals, 
we used the BCI Competition dataset which is widely used in 
the BCI study. We used a dataset 2a of BCI Competition IV. 
The dataset consisted of nine subjects and was recorded four 
classes MI task, left hand, right hand, foot, and tongue MI, 
through 22-channel electrodes. The training dataset and test 
dataset are equally composed of 72 trials for each class. For a 
two-class classification scenario, we utilize two MI tasks, i.e., 
the left hand and right hand MIs. EEG signals were bandpass 
filtered using a fifth-order Butterworth filter from 8Hz to 
30Hz to reflect the ERD/ERS pattern of MI. Based on the 
winner BCI Competition IV and [8, 12], we used the EEG data 
from 0.5 to 2.5 seconds after the cue. We used 7 subject’s EEG 
data excluding A03E and A07E. 

To validate sensitivity to outliers, we applied multivariate 
outliers to the training dataset. The outliers were generated 
with a Gaussian distribution 𝑁𝐶(𝑚 + 3𝜎, 3Σ)  of 22 
dimensions, where 𝑚, 𝜎, and Σ are mean, a standard deviation 
of each channel of training dataset, and covariance of the 
training dataset. The frequency of outliers was increased from 
0% to 50% of the number of training samples with step 10%. 

Classification performance was computed by a linear 
discriminant analysis (LDA) based on the feature vectors 
obtained in the case where 𝑛𝑥 =  𝑛𝑦 = 3. The classification 
performance obtained from 7 subjects can be seen in Table 1. 
As the occurrence of outliers increases, the classification 
accuracies of all three CSPs decreases. The proposed CSP-Lp 
indicates enhanced accuracies in most cases of severe outliers 
compared to CSP-L2 and CSP-L1 and is comparable to CSP-
L1 in few cases. These results suggest that the proposed CSP-
Lp is most effective for suppressing the effect of outliers than 
other two CSP methods.  

 

V. CONCLUSION 

We have presented a robust CSP for MI-BCI by utilizing 
the Lp-norm based dispersion of filtered EEG signals. The use 
of Lp-norm in CSP-Lp results in insensitivity to outliers. By 
validating the capability of the proposed CSP-Lp on synthetic 
toy dataset and real EEG BCI dataset, we confirm that the 
proposed CSP-Lp achieves improved robustness to outliers in 
cases where severe outliers occur. 
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