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Abstract— Error backpropagation algorithms are essential for 
training deep neural networks, but they have several problems 
due to sequential feedback calculation to propagate error 
signals. Recently, a method using only two consecutive forward 
calculation with input perturbation has been proposed as an 
alternative, which is called PEPITA. Although PEPITA has 
shown the possibility of successful learning without backward 
computation, it is still in its early stages and needs further 
investigation on its properties. In this study, we analyze the 
characteristics of PEPITA and propose a new method for 
generating modulated input, specifically for the second forward 
computation. In particular, we show that the adversarial 
perturbation used to generate attack samples is closely related 
to the input perturbation process of PEPITA, and propose to use 
the adversarial perturbation in combination with PEPITA 
learning. The potential of the existing PEPITA and the proposed 
modification is analyzed through experiments using different 
activation functions under various attack conditions. From the 
experiments, we confirm that a proper combination of input 
modulation and activation function can improve the prediction 
accuracy and adversarial robustness. This work extends the 
applicability of PEPITA and lays the foundation for the analysis 
of alternative learning algorithms. 

Keywords—Error backpropagation, Biological plausibility, 
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I. INTRODUCTION  
Artificial neural networks are computer-based 

technologies that mimic the way the human brain works. 
Through the interaction of multiple neurons, the brain is able 
to perform sophisticated signal processing and complex tasks. 
The artificial neural networks can learn complex patterns 
through multiple layers of neurons to perform difficult tasks. 
During the learning process of the neural networks, it is 
necessary to assign the responsibility for each neuron’s weight 
to the current network outputs, which is known as the credit 
assignment (CA) problem. To solve this problem, the error 
backpropagation algorithm (BP) [1] has been proposed, which 

starts with the error in the output layer and propagates it 
sequentially backwards to adjust the weights of the neurons in 
each layer.  

Error backpropagation algorithms are a popular method 
for training deep network models, but they have several 
limitations. One of these limitations is the weight transport 
problem [2, 3], which requires the exact values of forward 
weights  for the backward process of updating weights. This 
is not biologically plausible because, in a real neuron, 
backward transmission of information along the axon is not 
possible. Furthermore, the error backpropagation method 
requires sequential computation of the error gradient when 
updating weights in a layer-by-layer manner, which is 
commonly called the backward locking problem [4, 5]. The 
sequential feedback of output error differs from the local 
learning mechanism of the human brain and makes it difficult 
to parallelize learning [6, 7]. 

Several alternative learning algorithms have been 
proposed to overcome the limitations of error 
backpropagation learning [8-18]. Recently, new learning 
methods [16-18] have been proposed that use two forward 
calculations instead of forward-backward iteration. These 
methods have been experimentally shown to enable learning 
without the backward path of error propagation, which is the 
main cause of many limitations of BP. In particular, the 
method of presenting the error to perturb the input to modulate 
activity (PEPITA) [17, 18] utilizes input with additional 
perturbation for the second forward calculation, which is 
defined as a random transition to the output error for the first 
input. The differences in the activation of each neuron for the 
two inputs are then used for determining the update term. The 
input modulation used for the second forward calculation in 
PEPITA can be considered as generating adversarial samples 
in deep learning. In PEPITA, network error is used to generate 
perturbed input for the second forward computation. Similarly, 
in deep learning, adversarial samples are generated by using 
network loss to generate such samples. 

This paper investigates the adversarial robustness of the 
PEPITA learning method, and provides a modified version of 
PEPITA for improving its performance. First of all, we 
investigate the effect of activation function on the 
performance of  PEPITA learning. Additionally, we propose 
a modified perturbation method using the gradient of the loss 
function and demonstrate its effects on the learning accuracy 
and adversarial robustness. 
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This paper is organized as follows. Section 2 introduces 
related work, and Section 3 describes the PEPITA method, 
which is the basis of this study and presents a modified version 
of the PEPITA learning procedure where the activation 
function is transformed and perturbed by a loss gradient. 
Section 4 presents the experimental results, and Section 5 
concludes with a summary and outlines future work. 

 

II. RELATED WORKS 
Several alternative learning methods [8-18] have been 

proposed to address the weight transport and backward 
locking problems of the error backpropagation algorithms. 
The first approach [8-13] solves the weight transport problem 
by establishing separate path for error feedback and random 
fixed backward weight [8-11] and their update rules [12, 13]. 
In addition, some of them uses direct feedback path from the 
network output to each hidden layer, which can also solve the 
backward locking problem as well. The second approaches 
[14-15], avoid the weight transport problem by propagating 
the target value instead of computing the error gradient.  

Unlike the previous works, more innovative approaches 
[16-18] have been proposed to eliminate the backward path 
itself and learn through two consecutive forward calculations. 
These methods update the network weights by using the 
discrepancies obtained from two sequential forward 
computations. They do not use backpropagation, which solves 
the weight transport problem and simplifies the computation 
of error gradients. 

The forward-forward (FF) method [16] uses two forward 
passes to train instead of the traditional backward pass. This 
method involves performing the first forward computation 
using clean data and the second forward computation using 
distorted data as input. The goal of this process is to maximize 
the difference in neural activity values between clean and 
distorted data and use it for training. Although the FF method 
shows the possibility of learning without backward path, it 
requires an elaborated generation of distorted data. PEPITA 
[17, 18] is another method that performs two forward 
computations. This method perturbs the input used in the first 
forward computation when generating the input for the second 
forward computation. In contrast to FF, in the second forward 
computation, the error from the first computation is added to 
the existing input to create a perturbed data, which is then used 
to modulate the activation values of the layer. Finally, the 
weights are updated by using the modulated activation values 
computed during the second forward pass and the activation 
values computed during the first forward pass. 

Although PEPITA is still in its early stages and its 
performance is not optimal, it is noteworthy for achieving 
acceptable results without requiring backward computation. 
Additionally, the method is significant because it mimics 
neuromodulators in the brain, implementing a top-down 
learning mechanism to some extent. In addition, methods that 
perform two forward computations naturally eliminate 
backward sequential computations, thus eliminating the need 
for forward weights and solving the weight transport problem. 
These methods use local learning based on Hebbian learning 
[22] principles to solve non-local problems, making learning 
more biologically plausible. Also, the update lock problem 
can be partially solved by allowing the layer that has 
completed the second forward pass to initiate a new first 
forward pass. 

 

III. PERTURBATED ERROR LEARNIG WITHOUT BACKWARD  

3.1. PEPITA Learning 
 

First, we introduce the original PEPITA learning method, 
which removes the backpropagation path and uses two 
forward paths, and propose its modification. The discussion 
focuses on the multilayer perceptron model, but the same 
approach can be applied to a variety of network models, 
including convolutional neural networks. When an input x is 
given to a network with L layers, the first forward calculation 
is performed sequentially in layer-by-layer manner. The 
output vector   of the l-th layer is computed by using the 
output of the l-1th layer, the weight matrix   connecting 
them, and the activation function (. ), such as  

 a =Wl
 h , (1) 

 hl
 =f (al

 ), (2) 

where  = 1, … ,  . Through the sequential forward 
computation from the input layer to the output layer, we obtain 
the network output  hL  and the error vector = hL − , which 
is the difference from the target value .  

 In the second forward calculation, the error vector  from 
the first calculation is used to make the modulated input for 
the second calculation. The error vector is linearly 
transformed by a random fixed matrix (F) to make an error-
based perturbation , and the perturbation is added to the 
original input . The perturbated input is then used to perform 
the second forward computation to obtain the modulated 
outputs for each layer, such as  

 h1
 =f (( + )), (3) 

 hl
 =f ( ), (4) 

 ∗ = hL − , (5) 

where  = 2, … ,  .  

Using the activation values from the two forward 
calculations, the weights are updated through local learning, 
which is defined as  

 ∆W = (h − h1
 )( + ), (6) 

 ∆W = (h − h )(hl ), (7) 

 ∆W = (∗)(hl ). (8) 

In previous studies [17, 18], PEPITA demonstrated the 
possibility of learning without backward propagation. 
However, this approach is still in its early stages and requires 
further investigation and modification. As a first step toward 
more understanding on the PEPITA learning method, this 
paper investigates the effect of two components: the activation 
function (. ) and the perturbation term . While the original 
PEPITA uses the rectified linear unit (ReLU) for activation 
function, we try to apply sigmoidal unit, which has 
biologically more plausible shapes. In addition, we try to find 
more strategic generation of perturbed signal instead of just 
random projection of error vector, which will be described in 
the next subsection. 

 



 

 

3.2. Learning with Adversarial Perturbation 
 

As described in Section 3.1, PEPITA generates a perturbed 
input by applying a random matrix to the errors obtained from 
the first forward computation and adding them to the input. 
This perturbed input is then used in the second forward 
computation, and the differences in the activities of the hidden 
neurons are used to update the weights. In this study, we 
investigate how the generalization performance and 
adversarial robustness of the model vary depending on the 
activation functions and input perturbations. 

The technique of adversarial attack is used to create input 
perturbations. Adversarial attack is a deep learning technique 
that generates manipulated input data, called adversarial 
samples, with the intention of deceiving a model. Adversarial 
samples were originally designed to cause models to make 
incorrect predictions. However, they can also be used to 
improve the adversarial robustness of the model by serving as 
augmented training samples. Noting that PEPITA uses similar 
input perturbation for training networks, we propose using 
adversarial samples to define the perturbed input for the 
second forward calculation in PEPITA learning. 

Instead of the random projection of the error vector, we 
use the gradient of the loss function over the input vector, as 
shown in Figure 1, to generate adversarial samples as input for 
the second forward calculation. The technique of using the 
loss gradient to create adversarial samples is inspired by the 
fast gradient sign method (FGSM) [20], which is the most 
well-known attack method. While the conventional FGSM 
uses the sign value of the loss gradient, we take the gradient 
itself with small scaling coefficient ϵ, and the perturbed input 
is defined as  + ϵ∇xEθ, x, y  , where θ  is the network 
parameter.  

The resulting adversarial sample is then used for the input 
of the second forward calculation to obtain the output of first 
hidden layer such as 

 1
 = f   + ϵ∇xEθ, x, y . (9) 

When the loss function E is the squared error, which has the 
form,  

 (θ, x, y) = ‖ − y‖, (10) 

the gradient of loss with respect to the input is obtained as 

 ∇xEθ, x, y  =   . (11) 

Here, we can see that the error vector used in the 
conventional PEPITA is also used in the proposed adversarial 
perturbation. However, the proposed method uses the 
Jacobian matrix instead of a random fixed matrix, which may 
provide a more meaningful direction. This process has the 
potential to enhance the network's ability to respond to 
adversarial environments, thereby improving the model's 
overall robustness and performance. In addition, selecting an 
appropriate activation function can significantly impact the 
model's learning and generalization performance. The 
PEPITA learning method can further improve the robustness 
and accuracy of models by integrating these two approaches. 

 

IV. EXPERIMENTS ON BENCHMARK DATA SETS 

4.1. Experimental environment and data sets 
 

To investigate the effect of the modified PEPITA learning 
method, computational experiments are performed on two 
benchmark data sets. First, the MNIST data set [24] is 
composed of handwritten digit images that can be classified 
into 10 categories from 0 to 9. It consists of 70,000 samples of 
data, of which 60,000 are used for training and 10,000 for the 
test. Each data sample consists of 28x28 gray image and a 
corresponding class label. The second benchmark data, 
Fashion MNIST dataset [25] consists of 70,000 grayscale 
images categorized into 10 classes, including T-shirts, dresses, 
and shoes. Each sample is a 28x28 pixel grayscale image, and 
the whole set is divided into a training set with 60,000 images 
and a test set with 10,000 images. The dataset presents a more 
complex classification challenge than MNIST. 

For training MNIST dataset, 100 training epochs were 
performed, and the weight parameters giving the minimal test 
error was finally selected. The same strategy was applied for 
training Fashion MNIST dataset. The network structure for 
the experiment was determined according to the previous 
studies [17, 18, 22]. For both datasets, we used multilayer 
perceptron model with one hidden layer and 1024 hidden 
neurons. The learning rate and epsilon value were manually 
optimized for each model through the experiment to obtain 
minimum test error performance and fast convergence. The 
cross-entropy function was used as the loss function of all 
experiments.  

To investigate how performance changes under different 
conditions, we compared three learning methods: the original 
BP, the original PEPITA with input perturbation by random 
projection of error vector, and the proposed modification of 
PEPITA with adversarial perturbation of input. Additionally, 
we attempted to merge the original PEPITA with the modified 
version. We trained using the original PEPITA for the first 
half of the learning epochs and then switched to the modified 
PEPITA for the remaining half. We also examined the impact 
of nonlinearity types (activation functions) on performance, 
specifically the logistic sigmoid and ReLU function. 

 

 

Fig 1. PEPITA using adversarial perturbation  



 

 

TABLE I.  CLASSIFICATION ACCURACIES ON MNIST AND FASHION 
MNIST DATA DEPENDING ON LEARNING METHODS AND ACTIVATION 

FUNCTIONS 

 Classification Accuracy for Test Set (%) 

Activation Method MNIST Fashion  
MNIST 

ReLU 

BP 98.39 89.14 
Original PEPITA 98.04 86.38 
Modified PEPITA 95.91 85.69 
Combined PEPITA 98.19 87.65 

Sigmoid 

BP 97.7 79.3 

Original PEPITA 98.04 86.74 
Modified PEPITA 91.39 83.17 
Combined PEPITA 98.36 86.75 

 

4.2. Experimental Results 
 

The classification accuracy results on the two data set are 
summarized in Table 1. For each type of activation function, 
we marked the best results in bold fonts and underlines. The 
results indicate that both the original PEPITA and the 
combined PEPITA perform competitively with BP in all cases. 
Especially, for the fashion MNIST data that is more 
challenging than MINIST, PEPITA method with sigmoid 
activation outperforms BP.  

On the other hands, we can also see that the performance 
of the modified PEPITA is slightly lower than others. Unlike 
the original PEPITA using fixed transition matrix, the 
modified PEPITA uses loss gradient depending on each input, 
which may cause learning instability. However, from the 
result of the combined PEPITA, we can conclude that 
performance improvement is possible with a proper 
combination of the two perturbation methods. In addition, by 
comparing the two different types of activation functions, we 
find that the sigmoid function achieves better performance 
than ReLU, which was used in previous studies.   

Table 2 presents a comprehensive analysis of the 
adversarial robustness of various learning methods when 
subjected to attacks generated from the MNIST dataset using 
both FGSM and PGD methods. The variable ε denotes the size 
of perturbation noise. When the ReLU activation function is 
used, BP shows the best robustness against a variety of 
adversarial attacks. When using the sigmoid activation 
function, BP is found to be the most robust to FGSM and PGD 
attacks when epsilon values are small. However, in the FGSM 
attack, PEPITA with sigmoid activation is the most robust for 
ε values greater than 0.2. Furthermore, the combined PEPITA 
method with sigmoid activation shows the second-highest 
robustness as ε increases. This trend is also observed in PGD 
attacks. As the value of ε increases, PEPITA with sigmoid 
activation or its combined version, shows greater robustness 
to PGD attacks compared to other methods.  

The experimental results highlight the importance of 
selecting an appropriate activation function to enhance the 
robustness of learning methods under varying conditions. 
When using the sigmoid activation function, the combined 
PEPITA method can achieve comparable or slightly lower 
performance than BP with ReLU, which shows the best 
performance. As the value of ε increases, PEPITA with 
sigmoid activation consistently demonstrates greater 
robustness compared to ReLU. These findings suggest that 
the careful choice of activation function, such as the sigmoid, 
is crucial in different versions of PEPITA, especially to 
maintain robustness against higher levels of adversarial 

TABLE II.  ADVERSARIAL ROBUSTNESS ON MNIST DATA DEPENDING 
ON LEARNING METHODS AND ACTIVATION FUNCTIONS 

 Robustness to Adversarial Attack (%) 

Activation Method 
FGSM Attack PGD Attack 

ε=0.1 ε=0.2 ε=0.3 ε=0.1 ε=0.2 ε=0.3 

ReLU 

BP 54.16 12.10 1.93 21.30 0.56 0.04 

PEPITA 7.05 0.08 0.00 0.18 0.0 0.0 

Modified 0.49 0.0 0.0 0.00 0.0 0.0 

Combined 5.91 0.03 0.0 0.8 0.0 0.0 

Sigmoid 

BP 34.63 6.42 0.85 20.14 0.29 0.01 

PEPITA 21.24 15.54 14.91 15.69 13.03 12.91 

Modified 13.25 0.12 0.12 12.06 0.0 0.0 

Combined 16.95 7.02 5.77 9.28 4.70 4.41 
 

perturbation. This insight could guide future enhancements in 
the development of more resilient neural network models. 
 

V. CONCLUSION 
In this paper, we present a modified version of the PEPITA 

learning method in which a network is trained by means of 
two forward computations. Although the PEPITA method has 
demonstrated good performance by eliminating the backward 
computation, further research is needed to investigate its 
compatibility with different activation functions and its 
application in various fields. This study proposes a new 
approach to generate modulated input using the Fast Gradient 
Sign Method (FGSM) based on the similarity between the 
modulated input generation method of PEPITA and the 
adversarial sample generation method of deep learning and the 
performance of PEPITA was evaluated through a 
compatibility analysis with activation functions. The 
experimental results show that the proposed method and 
PEPITA are generally inferior in performance to BP but are 
relatively more robust to adversarial attacks as the epsilon 
value increases. In particular, the use of the sigmoid activation 
function has a positive impact on the robustness. Future 
research will integrate adversarial training techniques to 
improve the robustness of the PEPITA learning method. In 
addition, extensive experiments will be conducted on a variety 
of data sets and models to thoroughly analyze the performance 
of the method.  

REFERENCES 
 

[1] D.E. Rumelhart, G.E. Hinton and R.I. Williams, “Learning 
representations by back-propagating errors,” Nature, vol. 323, pp. 533-
536, 1986. 

[2] F. Crick, “The recent excitement about neural networks”, Nature, Vol. 
337, No.6203, pp. 129-132, Jan, 1989. 

[3] S. Grossberg, “Competitive learning: From interactive activation to 
adaptive resonance”, Cognitive science, vol. 11, No. 1, pp. 23-63, 1987. 

[4] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, 
D. Siver and K. Kavukcuoglu, “Decoupled neural interfaces using 
synthetic gradients”, 34th International Conference on Machine 
Learning, vol. 70, ICML’ 17, pp. 1627-1635, 2017. 

[5] W. M. Czarnecki, G. Swirszcs, M. Jaderberg, S. Osindero, O. Vinyals 
and K. Kavukcuoglu, “Understanding synthetic gradients and 
decoupled neural interfaces”, 34th International Conference on 
Machine Learning, vol. 70, ICML’ 17, pp. 904-912, 2017. 

[6] L. Khacef, P. Klein, M. Cartiglia, A. Rubino, G. Indiveri, and E. Chicca, 
“Spike-based local synaptic plasticity: A survey of computational 
models and neuromorphic circuits”, arXiv:2209.15536., 2022. 

[7] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier, 
“Training end-to-end analog neural networks with equilibrium 
propagation”, arXiv:2006.01981., 2020. 



 

 

[8] T. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random 
synaptic feedback weights support error backpropagation for deep 
learning”, Nature Communications, vol. 7, Article 13276, Nov. 2016. 

[9] Q. Liao, Z.L. Leibo and T. Poggio, “How Important Is Weight 
Symmetry in Backpropagation?,” 30th AAAI Conference on Artificial 
Intelligence, 2016. 

[10] A. Nøkland, “Direct Feedback Alignment Provides Learning in Deep 
Neural Networks,” 30th Conference on Neural Information Processing 
Systems, 2016. 

[11] B. Crafton, A. Parihar, E. Gebhardt and A. Raychowdhury, “Direct 
Feedback Alignment With Sparse Connections for Local Learning,” 
Frontiers in Neuroscience, vol. 13, pp 525, 2019.  

[12] J. F. Kolen and J. B. Pollack. “Backpropagation without weight 
transport”, In Proceedings of 1994 IEEE International Conference on 
Neural Networks (ICNN’94), vol.3, pp. 1375-1380, IEEE, 1994. 

[13] M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap and D. B. Tweed, 
“Deep learning without weight transport”, 33rd Conference on Neural 
Information Processing System, 2019 

[14] D.-H.. Lee, S. Zhang, A. Fischer, and Y. Bengio. “Difference target 
propagation”, In ECML/PKDD, Machine Learning and Knowledge 
Discovery in Databases, pp. 498–515. Springer International 
Publishing, 2015. 

[15] C. Frenkel, M. Lefebvre and D. Bol, “Learning Without Feedback: 
Fixed Random Learning Signals Allow for Feedforward Training of 
Deep Neural Networks,” Frontiers in Neuroscience, vol. 15, pp. 20, 
2021. 

[16] G. Hinton, “The forward-forward algorithm: Some preliminary 
investigations”, arXiv:2212.13345., 2022 

[17] G. Dellaferrera, and G. Kreiman, “Error-driven input modulation: 
Solving the credit assignment problem without a backward pass”. In 
Proceedings of the 39th International Conference on Machine Learning, 
vol. 162, pp. 4937–4955. PMLR, 2022. 

[18] R. F. Srinivasan, F. Mignacco, M. Sorbaro, M. Refinetti, A. Cooper, G. 
Kreiman, and G. Dellaferrera. “Forward Learning with Top-Down 
Feedback: Empirical and Analytical Characterization”, 
arXiv:2302.05440 [cs]. 2023.  

[19] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. Hinton and T. 
Lillicrap, “Assessing the scalability of biologically-motivated deep 
learning algorithms and architectures”, Advances in neural information 
processing systems, 31., 2018. 

[20] I. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing 
adversarial examples”, In International Conference on Learning 
Representations, 2015. 

[21] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in 
the physical world,” arXiv preprint arXiv:1607.02533, 2016. 

[22] T. F. Matilde ,O. Thomas, D. Giorgia, G. Benjamin, and P. Angeliki 
Pantazi, “Efficient Biologically Plausible Adversarial Training”, arXiv 
preprint arXiv : 2309.17348., 2023. 

[23] D. O. Hebb, The Organization of Behavior:A Neuropsychological 
Theory, Hoboken, NJ: John Wiley & Sons, 1949 

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based 
learning applied to document recognition,” Proceedings of the IEEE, 
1998. 

[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image 
Dataset for Benchmarking Machine Learning Algorithms,” 
arXiv:1708.07747, 2017.

 
 


