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Abstract—In recent years, ship detection based on remote 

sensing images has emerged as a crucial task for coastal nations 

due to the advancement of remote sensing technology. Among 

active imaging sensors in remote sensing, synthetic aperture 

radar (SAR) stands out as one of the most significant ones 

because of its immunity to cloud cover and ability to operate day 

and night. However, ship targets in SAR images pose challenges 

such as indistinct contour information, intricate backgrounds, 

and intense scattering. Despite commendable results achieved 

by ship detection algorithms based on deep learning neural 

networks, they still suffer from numerous missed detections and 

false alarms. In this study, we propose an enhanced real-time 

detection transformer (RT-DETR) with dual convolutional 

kernels (DualConv) for accurate ship detection in SAR images. 

Numerical experiments conducted on the high-resolution SAR 

image dataset (HRSID) demonstrate the effectiveness of the 

proposed method, improving detection accuracy and model’s 

robustness and capability in complex marine environments. 
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I. INTRODUCTION 

Synthetic aperture radar (SAR) is a microwave imaging 
sensor that can actively detect in all-day and all-weather 
conditions. It has excellent applicability for monitoring oceans 
with changing climates [1]. SAR remains unaffected by the 
changeable ocean weather, providing real-time monitoring 
capabilities for ship targets in all directions [2]. 

Computer vision has undergone a revolutionary 
transformation driven by the arrival of convolutional neural 
Networks (CNNs) and deep learning architectures. Object 
detection, a crucial aspect of computer vision, aims to locate 
and categorize specific objects in images or videos. In recent 
decades, various object detection methods have been proposed, 
including feature-based, template-based, and deep learning-
based approaches. Among these, deep learning methods have 
made great progress, especially methods based on CNN, such 
as the faster region-based convolutional neural network 
(Faster R-CNN) [3] and you only look once (YOLO) [4], have 
achieved good results. CNN architectures are generally heavy 
on memory and computational requirements which makes 
them infeasible for embedded systems with limited hardware 
resources. 

DEtection Transformer (DETR) is a relatively new object 
detection algorithm that was introduced in 2020 by 
researchers at Facebook AI Research (FAIR) [5]. Unlike the 
traditional two-stage pipeline, DETR replaces it with a 
transformer, providing the advantages of an end-to-end 
architecture and global context modeling. By leveraging the 

self-attention mechanism,  allowing the model to comprehend 
contextual features and their correlation, transformer-based 
methods have emerged as a recent breakthrough compared to 
CNN-based detectors. However, the unaddressed issue of the 
high computational cost of DETRs limits their practical 
application and preventing them from fully exploiting the 
benefits of no post-processing, such as non-maximum 
suppression (NMS).  

Real-Time DEtection TRansformer (RT-DETR) was 
proposed to eliminate the inference delay caused by NMS and 
outperform YOLO detectors of the same scale in both speed 
and accuracy [6]. They design an efficient hybrid encoder to 
efficiently process multi-scale features by decoupling the 
intra-scale interaction and cross-scale fusion, and propose 
intersection over union (IoU)-aware query selection to 
improve the initialization of object queries. The proposed 
detector supports flexibly adjustment of the inference speed 
by using different decoder layers without the need for 
retraining, which facilitates the practical application of real-
time object detectors. In addition, dual convolutional kernels 
(DualConv) for constructing lightweight deep neural networks 
was proposed by [7]. DualConv can be employed in any CNN 
model by some structural innovations, and significantly 
reduces the computational cost and number of parameters of 
deep neural networks while surprisingly achieving slightly 
higher accuracy than the original models.  

In this paper, based on the RT-DETR, we conduct training 
optimization for the characteristics of the SAR ship detection 
combined with DualConv. The high resolution SAR images 
dataset (HRSID) [8] are used for verifying the effectiveness 
and the applicability of the proposed scheme. 

II. METHODOLOGY 

A. Overview of the Proposed Method 

In this paper, we propose the enhanced RT-DETR method 
for SAR ship targets detection, leveraging the integration of 
dual convolutional filters. The architecture is delineated by 
three main components: a backbone, an efficient hybrid 
encoder, and a transformer decoder with auxiliary prediction 
heads, as illustrated in Fig. 1. The architecture diagram of the 
enhanced RT-DETR model shows the utilization of the last 
three stages of the backbone {𝑆3, 𝑆4, 𝑆5} as inputs to the 
encoder. The efficient hybrid encoder transforms multiscale 
features into a sequence of image features through intrascale 
feature interaction (AIFI) and cross-scale feature-fusion 
module (CCFM). To initiate the decoding process, an IoU-
aware query selection mechanism is employed to select a fixed 
number of image features to serve as initial object queries for 
the decoder. Finally, the decoder with auxiliary prediction 
heads iteratively optimizes object queries to generate boxes 
and confidence scores. 
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B. Dual Convolutional Filters 

We employ the dual convolutional filters instead the 
original convolutional operation in the backbone. DualConv 
integrates 3 × 3  and 1 × 1  convolutional kernels for 
simultaneous processing of input feature map channels, 
utilizing the group convolution technique for efficient filter 
arrangement as shown in Fig. 2. 𝑀 represents the number of 
input channel (depth of input feature map), 𝑁 is the number of 
convolutional filters and output channels (depth of output 
feature map), and 𝐺  is the number of groups in dual 
convolution. 𝑁 convolutional filters are divided into 𝐺 groups. 
Each group processes the complete input feature map, with 
𝑀/𝐺  input feature map channels concurrently handled by 
3 × 3  and 1 × 1  convolutional kernels. The remaining 
channels (𝑀 −  𝑀/𝐺)  are processed by 1 ×  1 
convolutional kernels exclusively. The results of simultaneous 
3 ×  3  and 1 ×  1  convolutional kernels are summed up, 
denoted by the ⨁ sign in Fig. 2. The filter group structure 
enforces block-diagonal sparsity on the channel dimension, 
facilitating structured learning of highly correlated filter. 
Consequently, convolutional filters are not arranged in a 
shifted manner. The DualConv reduces parameters in original 
backbone network models through group convolution strategy, 
and promotes information sharing between convolutional 
layers. This is achieved by preserving the original information 
of input feature maps and enabling maximum cross-channel 
communication with 𝑀  1 ×  1  convolutions. As a result, 
DualConv can be constructed without the need for channel 
shuffle operation. 

C. Efficient Hybrid Encoder 

The proposed encoder comprises two integral modules, 
the AIFI and CCFM module. AIFI selectively engages in 
intra-scale interaction solely on 𝑆5, thus effectively mitigating 
computational redundancy. Appling self-attention operations 
to high level features characterized by richer semantic 
concepts facilitates the establishment of connection between 
conceptual entities within the image, which enhances the 
subsequent modules’ capabilities in detecting and recognizing 
objects. Meanwhile, intra-scale interactions of lower-level 
features are unnecessary due to the lack of semantic concepts 
and the risk of duplication and confusion in high-level feature 
interactions. CCFM is instantiated through the insertion of 
several fusion blocks, comprising convolutional layers into 
the fusion path. These fusion blocks play a pivotal role in 

amalgamating adjacent features, culminating in the creation of 
a novel composite feature. The  structural depiction of the 
fusion block is illustrated in Fig. 1, which contains 𝑁 
RepBlocks [9], and the two-path outputs are fused by element-
wise add. The process can be described as 

𝑄 = 𝐾 = 𝑉 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑆5),                      (1) 

𝐹5 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑡𝑡(𝑄, 𝐾, 𝑉)),                   (2) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝐶𝐹𝑀({𝑆3,  𝑆4, 𝐹5}),                   (3) 

where 𝐴𝑡𝑡  represents the multi-head self-attention, and 
𝑅𝑒𝑠ℎ𝑎𝑝𝑒 represents restoring the shape of the feature to the 
same as 𝑆5, which is the inverse operation of 𝐹𝑙𝑎𝑡𝑡𝑒𝑛. 

D. IoU-aware Query Selection 

IoU-aware query selection was proposed by constraining 
the model to produce high classification scores for features 
with high IoU [10] scores and low classification scores for 
features with low IoU scores during training [6]. Therefore, 
the prediction boxes corresponding to the top 𝐾  encoder 
features selected by the model according to the classification 
score have both high classification scores and high IoU scores. 
The incorporation of the IoU score into objective function of 
the classification branch serves to enforce a consistency 
constraint on both the classification and localization of 
positive samples. We reformulate the optimization objective 
of the detector as follows 

𝐿(�̂�, 𝑦) = 𝐿𝑏𝑜𝑥(�̂�, 𝑏) + 𝐿𝑐𝑙𝑠(�̂�, �̂�, 𝑦, 𝑏) 

                                   = 𝐿𝑏𝑜𝑥(�̂�, 𝑏) + 𝐿𝑐𝑙𝑠(�̂�, 𝑐, 𝐼𝑜𝑈),           (4) 

where �̂� and 𝑦 denote prediction and ground truth, �̂� = {�̂�, �̂�}, 
and 𝑦 = {𝑐, 𝑏} , 𝑐  and 𝑏  represent categories and bounding 
boxes, respectively.  

 

Fig. 2. The architecture of the dual convolutional filters. 
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Fig. 1. Detailed illustration of the proposed model architecture based on RT-DETR.  
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III. EXPERIMENTAL RESULTS 

A. Dataset and Training Strategy 

We use the HRSID [7] to verify the performance of the 
enhanced RT-DETR method. The HRSID is a well-
established dataset for SAR ship detection and instance 
segmentation, which consists of Sentinel-1 and TerraSAR-X 
images with resolutions of 0.5m, 1.0m, and 3.0m as contains 
5,604 high-resolution SAR images and 16,591 ship instances. 
It draws on the construction process of the COCO [11] 
datasets, including SAR images with different resolutions, 

polarizations, sea conditions, sea areas, and coastal ports, 
which is a benchmark for researchers to evaluate their 
methodologies. To conduct our experiments, we randomly 
divide images into a training set (65%) and a test set (35%). 
All the experiments are conducted on an NVIDIA RTX 4080 
graphics processing unit (GPU) using PyTorch framework. 
The batch size is set to 16 and the number of training epochs 
is set to 300. We use the AdamW optimizer with an initial 
learning rate of 0.0001, and the weight decay is set to 0.0001. 

B. Results and Discussion 

In this experiment,  the precision (𝑃), the recall (𝑅), the 
mean average precision (𝑚𝐴𝑃), 𝐺𝐹𝐿𝑂𝑃𝑠 and speed are used 
to evaluate the detection performance of the models.  

Table 1 lists the results of the HRSID with the enhanced 
RT-DETR and several YOLO models. The comparative 
experiments with state-of-the-art methods are conducted 
based on the YOLOv5 [12], YOLOv7 [13, 14] and YOLOv8 
[15]. The evaluation metrics demonstrate that the enhanced 
method outperforms the baseline YOLOv5, YOLOv7 and 
YOLOv8 methods in terms of accurate ship detection and 
maintains detection speed to meet the needs of real-time 
performance. 

TABLE I.  RESULTS OF THE HRSID 

Models P R 𝑨𝑷𝟓𝟎 𝑨𝑷𝟓𝟎:𝟗𝟓 GFLOPs 
Speed 

(ms) 

YOLOv5 0.909 0.853 0.924 0.662 4.1 2.5 

YOLOv7 0.882 0.77 0.866 0.578 13.0 3.2 

YOLOv8 0.898 0.835 0.913 0.667 8.1 2.1 

RT-DETR 0.93 0.868 0.935 0.713 56.9 3.5 

Enhanced 

RT-DETR 
0.929 0.871 0.938 0.715 47.3 3.4 
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Fig. 3. Comparison of the qualitative ship detection results for the enhanced RT-DETR and other methods in the HRSID. The green boxes represent 

correctly-detected ships, red boxes indicate missing ships, and blue boxes denote false alarms. (a) is the ground truth of SAR images, and (b-f) 

illustrate the detection results of different scale ships and complex background. 



Figure 3 presents exemplary results visualizing the 
detection results achieved by the proposed scheme. 
Experimental results demonstrate the effectiveness of the 
model in recognizing small-scale ships amidst diverse scales 
and intricate backgrounds. Compared with the baseline 
YOLO-based models and the original RT-DETR model, our 
proposed method performs well identifying and locating 
large-size ships simultaneously. 

IV. CONCLUSION 

In this work, we introduce an enhanced real-time detection 
transformer (RT-DETR) incorporating dual convolutional 
kernels (DualConv) for precise ship detection in SAR images, 
following a comprehensive analysis of existing state-of-the-
art object detection algorithms. The dual convolutional filters 
effectively reduce the computational cost of the original RT-
DETR model, catering to the demands of real-time detection. 
Combined with the real SAR dataset, our approach aims to 
detect ship targets fast and accurately in the complex marine 
environment. Multiple YOLO-based models were trained and 
evaluated to facilitate a comparative assessment of test results. 
The experimental results reveal the promising performance of 
our proposed method in SAR ship detection, offering 
significant potential for practical applications. This study not 
only fulfills ship detection requirements in terms of accuracy 
and real-time performance but also demonstrates superior 
recognition accuracy for large-scale ships compared to 
alternative models. Our proposed method thus serves as a 
valuable theoretical reference for addressing similar 
challenges in maritime object detection. 
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