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Abstract—Deep reinforcement learning (RL) has emerged as a
transformative technology for addressing intricate radio resource
allocation problems in both 5G and 6G networks. Nevertheless,
during the training phases of RL-based resource allocation al-
gorithms, online RL methods introduce potential risks as they
necessitate continuous interaction with the environment. Motivated
by the fact that the historical data of the resource allocation
process in the base station (BS) reveals the operation rules of the
mobile network dynamics, this paper proposes a novel data-driven
framework for resource allocation optimization, termed Offline
Graph Reinforcement Learning (OGRL). Different from existing
intelligent resource allocation schemes, which acquire policies by
interacting either with wireless network simulators or real-world
networks, the proposed OGRL framework exclusively leverages
historical data from BS to train a high-performance resource
allocation policy. Furthermore, by harnessing the capabilities of
the graph neural networks (GNNs) at processing intricate data
structures, OGRL can adeptly manage dynamic network envi-
ronments characterized by continuously changing active users.
Extensive experimental results substantiate that, following training
with historical data, the proposed OGRL attains Quality of Service
(QoS) and packet loss rates comparable to those of the best online
algorithms. Furthermore, OGRL exhibits excellent scalability and
generalization capabilities.

Index Terms—Resource allocation, Offline reinforcement learn-
ing, Graph neural network

I. INTRODUCTION

The upcoming wireless communication systems will be able
to handle important connections that have strict requirements
for both reliability and latency. International Mobile Telecom-
munications for 2030 and beyond (IMT-2030) expands three
scenarios on the basis of the three typical scenarios of IMT-2020
(5G), namely immersive communication, massive communica-
tion, and hyper-reliable and low-latency communication [1]. As
a further expansion of Ultra Reliable Low Latency Communica-
tion (URLLC) , hyper-reliable and low-latency communication
can better support services that require high levels of reliability
and low latency, such as vehicle-to-everything communication,
factory automation [2], vehicle-to-vehicle communication [3],
and augmented reality [4]. Among the techniques that can be
utilized to satisfy the strict quality of service (QoS) of URLLC ,
radio resource allocation (i.e., BSs allocate radio resources based
on user requirements and the wireless environment) is undoubt-
edly one of the key techniques. This is because the wireless
resources at the BS are limited, and the rationality of resource
allocation directly affects the overall performance of the wireless

network. However, most of the traditional scheduling algorithms,
e.g., proportional fair (PF) [5], and earliest-dead-line-first (EDF)
[6], can hardly satisfy the QoS of URLLC services. This means
that the radio resource allocation algorithm needs to be redefined
to effectively support these new cases.

More recently, reinforcement learning (RL) based algorithms
are developed to deal with the resource allocation problem
of URLLC services. In [7], the authors propose a deep RL
framework to solve the problem of semantic-aware resource
allocation. In [8], the authors propose a deep RL based re-
source allocation framework to mitigate the interference and
improve the constellation capacity in integrated satellite and
terrestrial networks. In [9], the authors consider the resource
allocation algorithm design for downlink multiple-input single-
output orthogonal frequency division multiple access URLLC
systems. Compared with traditional scheduling strategies, the
RL-based scheduling policies are capable of handling resource
allocation tasks in more complex 5G network environments.
However, all existing resource allocation algorithms in [7-9] are
designed based on online RL methods and commonly relay on
fully connected neural networks to approximate the objective
functions. This approach leads to the following issues:

• The Sim-to-Real Gap: While wireless simulators are use-
ful tools to accelerate the training of RL-based resource
allocation algorithms, they often are provided only with an
approximated model of the wireless environment, thus re-
sulting in what is called the sim-to-real gap: a mismatch of
simulated and real resource allocation performances caused
by the inaccurate representation of the real environment in
simulation. This means that resource allocation algorithms
that are fully pre-trained in a simulated environment still
need to be fine-tuned online [10]. The inappropriate de-
cisions during fine-tuning may try bad scheduling actions
that would incur quality of service degradation, congestion,
or even system instability in the wireless networks.

• Low Scalability and Generalization Performance: Most
of the existing RL-based resource allocation algorithms
proposed for B5G URLLC make use of a neural network
that has a fixed input/output structure. If the number of
active users (i.e., the users with packets awaiting transmis-
sion) in the real environment is much different from that
in the training process, the resource allocation algorithms
need to be retrained. This means RL-based models that are



only suitable for specific scenarios, with poor scalability
and generalization performance in the large-scale resource
allocation problem.

Motivated by the issues above, this paper investigates the
resource allocation optimization problem, which aims at pro-
viding a sufficient QoS guarantee for the URLLC services
in the B5G and 6G communication systems. Specifically, the
resource allocation problem is formulated, where the optimiza-
tion objective is to maximize the total number of successfully
transmitted and decoded URLLC data packets for users over a
long time scale. The resource allocation problem is proved to
be a Markov decision process (MDP), and a novel RL-based
optimization framework that combines the offline RL and graph
neural network (GNN) is proposed to solve the problem. The
main contributions of this paper are as follows:

• We propose the OGRL, which is a novel resource allo-
cation optimization framework for the resource allocation
of URLLC. Specifically, different from the existing RL-
based framework that needs to interact with the practical
wireless network, or network simulator to improve the pol-
icy, OGRL only utilizes the historical data of the resource
allocation process of the practical wireless networks to
train the algorithm in an offline manner. Without interacting
with the wireless network environment, this framework can
effectively ensure the safety of policy learning.

• We introduce GNN into OGRL to deal with the dynamic
wireless network environment where the number of active
users is constantly changing. By GNN modules’ capability
of handling variable-size inputs, OGRL can process graph-
structured data with varying numbers of active users.

• We design a resource allocation algorithm for URLLC
services based on OGRL. Extensive simulations show the
superiority and effectiveness of the proposed algorithm,
which can perform better than other offline-based RL algo-
rithms (e.g., Conservative Q-Learning (CQL) [11], Batch-
Constrained deep Q-learning (BCQ) [12]) in terms of QoS
and can achieve the same performance as the state of the
art online Soft Actor-Critic (SAC) [13] algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this work, we focus on the radio resource allocation of
the downlink transmission in the OFDMA wireless network for
URLLC services. We consider a single BS that serves a set N
of N active users and the wireless network has a set K of K
available RBs. A RB is the minimum resource unit allocated
to users in the time frequency domain, and the BS’s scheduler
determines the number of RBs allocated to the users according
to the CSI and QSI in each transmission time interval (TTI) ∆t.
xn(t), n ∈ N , is used to indicate whether user n is allocated
resources in t-th slot. If the n-th user is not scheduled in the
t-th slot, xn(t) = 0. Otherwise, xn(t) = 1. The amount of data
that transmitted to user n in t-th slot can be represented by
An(t). It is assumed that the packet arrival processes of users
follow Bernoulli processes. In each time slot, a packet arrives
with probability pn, and no packet arrives with probability 1 -

pn. Packets for the different users are waiting to be scheduled
in the corresponding queue, and each queue obeies the rule of
the first-in-first-out (FIFO).

The radio resource allocation algorithm of BS’s scheduler
is designed to provide URLLC services with millisecond level
end-to-end delay and nearly 100% reliability. The delay Dn of
user n’s packet comprises the queuing delay and transmission
delay. The scheduler determines whether to schedule users
and the number of RBs allocated to users according to the
channel state information and the head-of-line (HoL) delays(i.e.,
queue delay of the first packets). According to the specification
of 3GPP, the delay experienced by URLLC service’s packets
should higher than Dmin and lower than Dmax [14]. The
reliability is defined according to the packet loss probability. If
Dn(t) /∈ [Dmin, Dmax] or a specific packet can not be decoded
correctly, the packet is lost [10]. The decoding error probability
ϵn(t) of user n’s packet can be approximated by [15]

ϵn(t) ≈ fQ(
−Anln2 + ∆tWKn(t)ln[1 + ϕn(t)]√

∆tWKn(t)Cn(t)
), (1)

where W is the bandwidth of each RB, Kn(t) is the number of
RB allocated to the user n in the t-th slot, ϕn(t) is the downlink
signal-to-noise (SNRs) of user n in t-th slot, and Cn(t) is the
channel dispersion.

To avoid the long transmission delay, retransmission can not
be used to guarantee the reliability of URLLC. The decoding
error probability of user n should not exceed the following
threshold, i.e.,

ϵn(t) ≤ ϵmax. (2)

It can be seen that the decoding error probability in (1) decreases
with the increase in the number of RBs. If each user is scheduled
to transmit at most one packet each TTI, the corresponding
minimum number of RB K∗

n(t) that should be allocated to the
n-th user can be obtained by binary research [16].

Due to the wireless resource is limited, the number of RBs
allocated to the user n can be represented by [10]

Kn(t) =


xn(t)K

∗
n(t), if

N∑
n=1

xn(t)K
∗
n(t) ≤ K

[
xn(t)K

∗
n(t)∑N

n=1 xn(t)K∗
n(t)

N ], if

N∑
n=1

xn(t)K
∗
n(t)>K.

(3)

When radio resources are sufficient, allocation is demand-driven,
while resources are constrained, allocation is proportion-based.

Furthermore, the total number of packets successfully re-
ceived by users in t-th slot is defined as

L(t) =

N∑
n=1

[xn(t) · 1ϵn(t)≤ϵmax
n · 1Dn(t)∈[Dmin,Dmax]]. (4)

Specifically, if the transmission delay Dn(t) of the packet for
user n is within [Dmin, Dmax], 1Dn(t)∈[Dmin,Dmax] = 1, else
1Dn(t)∈[Dmin,Dmax] = 0. If the packet for user n is decoded
successfully, 1ϵn(t)≤ϵmax

n = 1, else 1
ϵn(t)≤ϵmax
n = 0.



B. Problem Formulation

We consider a discrete time period T = {1, 2, 3, ..., T}. The
goal of this paper is to maximize the total number of successfully
transmitted and decoded URLLC data packets for users over a
long time scale by optimizing the resource allocation in each
time slot. Hence, the overall problem can be formulated as

P1 : max
{xn(t)}

∑
t∈T

L(t), (5)

s.t. xn(t) ∈ {0, 1}, ∀n ∈ N , (5a)

Note that problem P1 is a sequential decision problem with
0-1 integer decision variables.

III. PROPOSED OGRL ARCHITECTURE

Radio resource allocation is challenging given the dynamic
situation in real-time wireless systems. A large number of
status combinations make it difficult to select resource allocation
algorithms as well as corresponding parameters. In this case,
deep RL can be an excellent tool to approximate the interaction
between resource allocation decisions and data transmission
performances. Figure 1 illustrates the implementation of the
proposed RL-based radio resource allocation framework. A
detailed introduction to the implementation of the framework
will be provided below.

A. MDP Formulation

The wireless channel fading in our model is assumed to be
Markovian. Both time slot and HoL delays are discrete variables,
and the HoL delay in the next slot is only related to the current
state. So the optimization problem P1 is a MDP problem, which
can be solved through RL [17]. Specifically, a MDP can be
represented by a tuple < S,A,P,R, γ >, where S denotes
the set of states, A denotes the set of actions, P denotes the
transition probability from state s ∈ S to state s′ ∈ S, R denotes
the reward received by agent, γ represents the discount factor. At
each time slot, the resource scheduling policy executes an action
a(t) that determines whether the user would be scheduled or not.
The wireless network will transition to the next state s(t + 1)
and return a reward r(t) which indicates the effect of a(t). The
state, action and reward of resource scheduling are set in details
as follows.

Action: The action a(t) is defined as [x1(t), ..., xN (t)] [10],
i.e., whether each active user in slot t is scheduled.

State: The packet delay and channel state are the key fac-
tors that impact the resource allocation for URLLC service.
Thus the state of the system in slot t is given by s(t) =

[
D1(t)

Dmax
, ...,

DN (t)

Dmax
,
K∗

1 (t)

K
, ...,

K∗
N (t)

K
] [10], where Dn(t) rep-

resents the HoL delays of user n , K∗
n(t) represents the number

of RBs allocated to the user n during the t-th slot.
Reward: The total reward of the system in t-th slot is defined

as the number of packets that successfully decoded by all users,
i.e., r(t) = L(t).
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Fig. 1. The overall architecture of the proposed framework

B. GNN and Offline-RL Based Scheduling Framework

In the real wireless environment, the number of active users
in the coverage range of the BS is constantly changing. Tradi-
tional RL-based resource allocation algorithms, often relying on
fully connected neural networks to approximate the relationship
between input states and output actions, necessitate retraining
when confronted with untrained large-scale active users. Con-
sidering that communication networks can be modeled as graph
structures, and GNNs can process graph information without
restrictions on the size and shape of the graph, we introduce
GNN to handle the scenario with the changing number of
active users and improve the scalability and generalization of
the resource allocation policy.

GNN network. The Graph SAmple and aggreGatE (Graph-
SAGE) algorithm is one of the most well-known GNN al-
gorithms. This approach is independent of the graph’s struc-
ture, such as the node degree distribution or batch size. The
GraphSAGE algorithm operates on a graph G(V, E), where V
represents a set of node, and E represents a set of edges between
the nodes. The node features are denoted as {xv, ∀v ∈ V}.
The number of nodes is defined as V = |V|. In In this paper,
the relations among the BS and active users at each time slot
can modeled by a certain graph. Specifically, the V -th node
represents the base station, and nodes numbered from 1 to V −1
correspond to N active users. The initial features of v-th active

user is set to xv(t) = [
Dv(t)

Dmax
,
K∗

v (t)

K
], v ∈ [1, V − 1], and the

node feature of the BS is set to [0, 0].
To make the resource allocation decision, the BS’s scheduler

should aggregate all the active users’ states, which can be
achieved by GraphSAGE. Given the graph consisting of BS and
users, GraphSAGE uses an aggregation function called MEAN
to aggregate the information from node neighbors and the
corresponding weight matrix W to map the original features of
nodes to a new representation space. Specifically, GraphSAGE
can obtain an embedding vector that can represent the state of
each user by following steps:

(i) BS aggregates the initial features of users into the neigh-
borhood vector h0:

h0 = MEAN(xv, ∀v ∈ [1, V − 1]), (6)

the aggregate function MEAN means we just take the element-
wise mean of the vectors in {xv, v = 1, ..., V − 1}.

(ii) The users’ original feature xv is concatenated with vector
h0, which is later fed into a fully connected layer with a
nonlinear activation function σ, and the embedding vector of
each user becomes:



hv = σ(W · CONCAT(xv,h0)). (7)

The CONCAT(·) function concatenates inputs along a spec-
ified dimension. The final representation of active users’ state
ŝv = hv,∀v ∈ Nneighbor(V ).

Subsequently, the original state s(t) is replaced with ŝ(t) (i.e.,
{ŝv, v ∈ [1, V − 1]}) as the input state for resource allocation
algorithm training. In each iteration, the state of user 1 to user V
are input into the actor network in turn, and the corresponding
scheduling actions are output. Then the Qv corresponding to
(ŝv, av) is calculated sequentially through the critic network, and
the final Q((ŝ, a)) is calculated by averaging {Q1, ..., QV−1}.

Conservative Q Learning (CQL). The goal of reinforcement
learning is to learn an optimal policy through interaction with the
environment in order to obtain the maximum long-term reward
in future decisions. Through ŝ(t) and a(t), the long-term reward
is estimated by an state-action value function: Q(ŝ(t), a(t)) =
E[
∑∞

i=0 γ
ir(t+ i)], where γ represents the discount parameter.

CQL is a data-driven deep RL algorithm based on SAC that
achieves the best-in-class results in offline RL problems.

The online SAC algorithm alternates between policy evalu-
ation and policy improvement [11]. Specifically, the policy is
evaluated by

Q̂t+1 ← r(ŝ, a) + γEat+1∼πt(at+1|st+1])[Q̂
t(ŝt+1, at+1)] (8)

[11]. The policy π can be improved by

π̂t+1 ← argmax
π

Ea∼πt(a|̂s)[Q̂
t+1(ŝ, a)− τ log(πt(a|̂s))]. (9)

The πt is the learned policy, π̂t+1 is the learned policy in the
t+1-th iteration, Q̂t+1 is the policy value in the t+1-th iteration,
τ is the temperature parameter in SAC.

However, as introduced in Section I, this kind of online
RL algorithm has the problems of the sim-to-real gap and
low scalability and generalization performance in the resource
allocation scenario. In contrast to the online RL, offline RL-
based algorithms can effectively avoid these problem by learning
from the real historical data of BS’s operations. When the
resource allocation policy conducts offline training, the datasets
D collected by the behavior policy (i.e., the policy used to
generate the dataset D) are usually independent of the policy
to be learned. Since π is trained to maximize Q-value, it may
be biased towards out-of-distribution (OOD) actions (i.e., the
distribution of data in the batch is different from the distribution
under the current policy) with erroneously high Q-values. In
online RL, this error can be corrected by trying an action in the
environment and observing its actual value. However, offline RL
can not correct the wrong actions in this way, thus the algorithm
will learn the wrong policy due to the high Q value.

In order to deal with this problem, the CQL algorithm is
adopted in this paper. The key idea of CQL is to bind the
difference between the Q values evaluated at in-distribution
actions (i.e., the distribution of data in the batch is the same
as the distribution under the current policy) and OOD actions
so that the policy update step will not exploit OOD actions.
Specifically, CQL makes that the expected value of a policy
under the learned Q-function lower-bounds its true value. A

Algorithm 1 Offline Training of the OGRL
1: Initialize θ, ϕ, α, τ , dataset D
2: for step t in {1,...,N} do
3: for v ∈ [1, V − 1] do
4: h0 = MEAN(xv, ∀v ∈ [1, V − 1]
5: hv = σ(W · CONCAT(xv,h0))
6: end for
7: ŝ = {hv, v ∈ [1, V − 1]}
8: for v ∈ [1, V − 1] do
9: Calculate Qv corresponding to each (ŝv, a)

10: end for
11: Q(ŝ, a) = MEAN{Qv, v ∈ [1, V − 1]}
12: Update critic θ with gradient descent via Eq. (10)
13: Improve policy πk through:

ϕt = ϕt−1+ηπEŝ∼D,a∼πk(a|̂s)[Q̂
k+1(ŝ, a)−τ logπ(a|̂s)]

14: end for

lower bound on the Q-value prevents the over-estimation that
is common in offline RL settings due to OOD actions [11].

The general form of the optimization problem in CQL can be
represented by

min
Q

max
π

α(Eŝ∼D,a∼π[Q(ŝ, a)]

− Eŝ∼D,a∼π̂(a|̂s)[Q(ŝ, a)])

+
1

2
Eŝ(t),a,̂s′∼D[(Q(ŝ, a)− B̂πkQ̂k(ŝ, a))2] +R(µ),

(10)

where π represents the target policy, α is the regulariza-
tion scaling parameter in CQL [11], α(Eŝ∼D,a∼π[Q(ŝ, a)] −
Eŝ∼D,a∼π̂(a|̂s)[Q(ŝ, a)]) denotes the regularization term used to
push down the big Q-values, π̂ represents the behavior policy,
πk represents the policy generated during iteration and B̂πk

represents the empirical Bellman operator. The first and second
items are used to constrain Q-function, where the first item is
the penalty of the Q-function to obtain the lower bound of the
Q-value, and the second item is used to maximize the Q-value
and attain a tighter lower bound for Vπ . The third item is the
standard TD error which is the optimization goal for Q learning.
To better estimate the Q-value, CQL adds the entropy of policy
π as the fourth item.

The main parameters of OGRL and related settings are as
follows: a) the learning rate of policy function ηπ is set to
3×10−4, b) the learning rate for Q functions ηc is set to 3×10−4,
c) the learning rate ητ for temperature parameter of SAC is set
to 3×10−4, d) the initial α value αinit is set to 1, e) the initial
τ value τinit is set to 1, f) θ: parameters of Q-function, g) ϕ :
parameters of target policy π, h) the dimension of the weight
matrix W of GraphSAGE model is set to 4×8, i) each fully
connected layer contains 256 neurons, j) all activation functions
use RELU function. The training procedure of OGRL is shown
in Algorithm 1.

IV. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Settings

A 5G wireless network simulator is implemented. The en-
vironment is set that 20 users are distributed randomly in the
coverage of the single cell, and the radius of the cell is 100



meters. The transmit power spectrum density of the BS Pmax is
20 dBm/Hz, the noise power spectrum density N0=-90 dBm/HZ.
The path loss model is 45+30log(l) dB, in which l is the distance
between the user and the BS. The value of TTI is 125 µs [10],
which corresponding to the minimum value of the slot. The
Dmin, Dmax is set as 5ms and 6 ms, respectively. The URLLC
packets for each user arrive at the BS following the Bernoulli
process. The bandwidth of a RB is 180kHz, and the size of each
packet L is 32 bytes. The packet arrival probability p varies from
0.1 to 0.5, the probability that a user becomes active in each time
slot increases with the packet arrival rate.
B. Baseline Schemes

We compare the OGRL with the following baseline algo-
rithms:

K-DDPG Algorithm: K-DDPG is proposed in [10] which is
designed based on the online DDPG algorithm. This algorithm
has demonstrated superior performance in handling resource al-
location problems for URLLC compared to traditional resource
allocation algorithms such as round-robin, MT, and EDF [10].

G-SAC Algorithm: The G-SAC is a resource allocation
algorithm based on SAC [13]. The ‘G’ in G-SAC indicates
that similar to OGRL, GraphSAGE is employed to process
the original features, aimed at enhancing the scalability and
generalization capabilities of the algorithm. At present, the G-
SAC algorithm consistently outperforms all other online RL-
based resource allocation policies.

K-BCQ Algorithm: K-BCQ is designed based on the offline
RL algorithm BCQ. ‘K’ indicates that K-BCQ, like K-DDPG, is
designed with the help of expert knowledge of scheduler design.
The core idea of K-BCQ is to avoid distribution shift problem by
introducing generative models that expand the experience pool
and make more efficient use of offline dataset.

M-CQL Algorithm: The M-CQL is a resource allocation
algorithm based on CQL. M-CQL does not add GraphSage and
still uses the same fully connected neural network as K-DDPG.
The ‘M’ means that M-CQL uses the multi-head neural network
in the critic network that is also adopted by the K-DDPG so that
it has multiple outputs to ensure each user’s QoS.
C. Dataset Collection

We run these three schemes, i.e., the G-SAC scheme, the K-
DDPG scheme, and the Random scheme on the 5G simulator
to simulate the resource allocation process of the 5G BS’s
scheduler and collect the data to build the historical dataset.
G-SAC and K-DDPG employ the optimal parameter settings
obtained through numerous experiments. Implementing the Ran-
dom scheme, the BS’s action selection over the entire time
horizon obeys a uniform probability distribution. Each strip of
data in the dataset consists of a tuple < S,A,P,R >. At last, 5
datasets are generated with different behavior policy and dataset
sizes, and the settings for the dataset are shown in Table I.
D. Performance Analysis

1) Convergence Validation: We assess the convergence of
OGRL using datasets with different qualities and sizes. Dataset
D1 is used to represent the expert dataset (i.e., the dataset was
collected by an optimal online algorithm and covers most of the

TABLE I
DATASET COMPOSITION

Dataset Behavior policy Collection Environment SizeNumber of users Packet arrival rate
D1 G-SAC 15 0.3 5 · 104
D2 G-SAC 15 0.3 2 · 105
D3 K-DDPG 15 0.1 5 · 104
D4 G-SAC 15 0.1 5 · 103
D5 Random 15 0.1 2 · 105
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Fig. 2. Illustration of convergence speed of the proposed OGRL framework
action-state space), D4 is used to represent the expert dataset
with a small size, D3 is used to represent sub-optimal dataset
(i.e., the dataset was collected by an sub-optimal online algo-
rithm and covers a part of the action-state space), and D5 is used
to represent random dataset respectively. We set the maximum
number of users and packet arrival rate in the test environment
to 15 and 0.3. Fig.2 illustrates the variations in the total reward
during the training of our proposed OGRL framework. We
observed that in experiments conducted on four datasets of
different qualities and sizes, the OGRL can converge to a stable
state, within 400 iterations. This means that OGRL has a good
convergence. Meanwhile, the algorithm trained on the expert
dataset showed the fastest convergence and best results. This
can be interpreted as the expert dataset providing a better quality
training sample, enabling the algorithm to learn more quickly.
The algorithm trained on suboptimal datasets shows relatively
slow convergence rates and lower final performance than expert
datasets. This validates the critical impact of dataset quality on
offline algorithm training.

2) Scalability and Generalization: We evaluate the scalability
and generalization of the proposed OGRL framework and other
baseline algorithms. We trained G-SAC and K-DDPG on the
simulator in an online way until convergence with 15 total users
and a 0.1 packet arrival rate. OGRL and M-CQL are trained in
an offline way based on expert dataset D2. Subsequently, the
performance of different algorithms under two distinct scenarios
is evaluated in the 5G simulator: 1) the total reward value that
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can be achieved under the same packet arrival rate with different
user numbers as shown in Fig.3 (a), and 2) the total reward value
that can be achieved under different packet arrival rates while
maintaining the same total number of users as shown in Fig.3
(b). We can see that when the number of users is relatively
small and the packet arrival rate is low, the performance of the
four algorithms is relatively similar. However, as the number of
users increases and the packet arrival rate rises, K-DDPG and M-
CQL show slower performance growth, while OGRL can always
maintain similar performance with the best online algorithm G-
SAC. This is attributed to the GraphSage component in OGRL
and G-SAC. In particular, although OGRL training is based on
the dataset of 15 users with a packet arrival rate of 0.3, OGRL
can still achieve excellent scalability and generalization when
the number of users is larger than 15 and the packet arrival rate
is larger than 0.3. The above results indicate that OGRL can
generalize well to scenarios with total user numbers and packet
arrival rates not encountered during the training process.

3) Performance Comparison With Baselines: Fig.4 shows
the performance of the proposed OGRL framework and other
baseline algorithms under different packet arrival rates in terms
of mean packet loss probability. Both OGRL, M-CQL, and K-
BCQ are trained by expert dataset D2. G-SAC and K-DDPG are
trained until convergence with 15 total users and a 0.3 packet
arrival rate. The packet loss probabilities are evaluated over 1000
episodes. It can be observed that although OGRL is trained in an
offline manner, it can achieve almost the same performance as
the optimal online algorithm G-SAC. On the contrary, M-CQL
and K-DDPG have worse performance. K-BCQ is also trained
by expert dataset but performs poorly in QoS requirements
assurance, which can be noted in Fig. 4. These results validate
that the proposed OGRL is comparable to the best online
algorithms and superior to other offline algorithms in terms of
packet loss rate.

V. CONCLUSION

This paper proposed an effective OGRL framework to solve
the resource allocation optimization problem in URLLC ser-
vices. Unlike existing algorithms, the proposed framework ex-
hibited a better generalization ability in various scenarios with
different active users and packet arrival rates and can ensure
the safety of policy learning. Specifically, a GraphSage-based
processing network was presented to process the dynamically

changing active users. In addition, a resource allocation algo-
rithm based on offline RL is proposed to avoid the interaction
with the environment during the training process, so as to ensure
the safety of the policy learning process. Performance evaluation
showed the effectiveness and superiority of the proposed OGRL
compared with other baseline algorithms. Specifically, OGRL
demonstrates comparable QoS and packet loss rate performance
to the optimal online algorithm while outperforming other
offline algorithms.
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