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Abstract—More and more kinds of sensors are used
including cameras in the vehicle to proactively address
safety issues, either directly or indirectly. Camera fail-
ures, such as abnormal frames caused by muzzy, ob-
struction, and flutter, can lead to system exceptions and
even traffic accidents because of their important role in
the vehicle’s system. We hope to reduce those exception
faults by recovering abnormal frames. Therefore, in
this paper, we first collect the video from the front-
facing camera and define the abnormal frames. Then,
this dataset is learned by a cycle generative adversarial
network (CycleGAN) to generate more abnormal frames
because sufficient samples are needed for better training.
Moreover, CycleGAN can also restore the abnormal
frames to normal frames, which reduces the system
faults. This method can mitigate the consequence of
camera failures and also works as a generator of
corresponding failure frames.

Index Terms—Fault Detection, GAN, Vehicle Inpaint-
ing, Camera Faulty

I. INTRODUCTION

The autonomous industry has always been a
pioneer in integrating various technologies, such
as artificial intelligence, information communica-
tions, and so on. Autonomous driving has been
gradually developing mature standards and sys-
tematic modules based on rich sensors and deep
learning technologies [1]. The autonomous vehi-
cle system is integrated with four core functional
modules: application, perception, planning, and
control. The application layer, as the basis for all
other layers, includes a variety of sensors and out-
puts plenty of data to other layers. For example,
camera sensors are placed at the front, rear, and
even inside vehicles for different purposes. One
or two cameras can be deployed in front of the
car for different requirements [2].

Front cameras have been used to detect inter-
vehicle spacing for safety. The original algorithm
focuses on traditional image features, such as
color, shadows, and edges [3, 4]. As hardware and

software are improving, machine learning meth-
ods have been introduced to camera applications,
such as fog detection [5] and front vehicle de-
tection [6]. Convolutional neural network (CNN)
is one of the representative deep learning models
used in vehicle cameras for lane detection [7],
pedestrian detection, and even aggregating the
data with other sensors to work on vehicle per-
ception [8] and localization.

To keep safety, we should pay attention to
potential malfunctions in the camera. The frame
failure is defined as a frame that exhibits com-
promised output quality and therefore results in
poor performance of vision-based algorithms us-
ing those frames. Frame failure can be produced
by various factors, including jitter caused by cam-
era instability, partial loss due to occlusion, and
issues related to camera hardware integrity. Col-
lecting failed camera frames is relatively difficult
because of diversity, so we use cycle generative
adversarial network (CycleGAN) [9] to establish a
connection between normal and abnormal frames.
CycleGAN is able to generate various abnormal
frames, which make a more sufficient dataset.
CycleGAN can link the source and target data in
an unpair correspondence. We collect the normal
and failed frames separately as source and target
data. Experimental results indicate that image
translation is effective for this dataset. To a con-
siderable extent, the frames are reliably generated
and reconstructed.

II. DATASET COLLECTION AND FINALIZATION

A. Data Collection

There is no available public dataset for our pur-
pose. However, a suitable dataset is necessary for
training a model. We construct a new scale dataset
using objects of different shapes, colors, light
transmittance, and materials for practical cases.
This dataset was taken using an RGB camera with
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Fig. 1. The dataset sample. (a) A normal frame. (b) The failure frames of different occlusion rates
from 30% to 100%.

a resolution of 1920×1080 and a frame rate of 30
fps, mounted on the vehicle’s windscreen. Dataset
is collected in both the daytime environment of
the kyungpook national university(KNU) campus,
city centre, and motorways. Some of the videos
are sourced from YouTube.

B. Data Finalization

This study divides the dataset into normal and
failure classes. In the failure class, the camera
is obstructed by objects of different sizes and
materials placed in front of it, as shown in Fig. 1.
We convert collected video to images as size of
256×256 at 1 fps. There are 8000 images per
class with 3500 training and 600 testing images
per class.

III. PROPOSED MODEL

A. Loss Function

We use CycleGAN for our unpaired dataset.
CycleGAN is an adversarial network for situa-
tions without paired training data. In this model,
there are two domains: a source domain X and
a target domain Y. Between X and Y are two
mapping generators G: X → Y and F: Y → X to
translate images shown in the Fig. 2.

Fig. 2. The architecture of CycleGAN. The model
has two mappings: G and F, between the source
domain X and the target domain Y. Each domain
has its own discriminator D.

In each mapping, the objective function is given
by,

LG (G,DX , X, Y )
= Ey∼Pdata (y) [logDY (y)]
+Ex∼Pdata (x) [log (1−DY (G(x)))] ,

(1)

LG (F,DY , X, Y )
= Ex∼Pdata (x) [logDX(x)]
+Ey∼Pdata (y) [log (1−DX (F (y)))] ,

(2)

where adversarial loss LG is the L1-loss function
that helps the Discriminator D distinguish fake
images and the Generator G to improve its output.

To increase the relationship between the source
and target domains in the unpaired dataset, we
compare the original image and the restored im-
age obtained through two mapping cycles for a
comparison called cycle consistency loss. The
sample of cycle consistency: x → G(x) →
F(G(x)) as shown in Fig. 3.

Fig. 3. The input normal image x, output fail-
ure images G(x) and the reconstructed images
F(G(x)).

Cycle consistency loss LC (G,F ) which is cal-
culated as follows, as follows:

LC (G,F )
= Ex∼Pdata (x) [∥F (G(x))− x∥1]
+Ey∼Pdata (y) [∥G (F (y))− x∥1] .

(3)

So the full loss function as below,



Lfull (G,F,DX , DY )
= LG (G,DX , X, Y )
+LG (F,DY , X, Y )
+λLC (G,F ) ,

(4)

where λ is the weight of the cycle consistency
loss.

B. Model Architecture

The CycleGAN training involves both a gener-
ator and a discriminator, as shown in the TABLE
I and II. The generator is construed with Conv2D
layers as an encoder, ResNet blocks [10] as a con-
verter and the ConvTranspose layer as a decoder.
The discriminator consisted of 5 Conv2D layers.

TABLE I: The generator structure.
Input : 256 × 256 × 3

Layer Filter Stride Channel Activation

Conv 7× 7 1× 1 64 ReLu

Conv 3× 3 2× 2 128 ReLu

Conv 3× 3 2× 2 256 ReLu

9 × ResNet

ConvTranspose 3× 3 2× 2 128 ReLu

ConvTranspose 3× 3 2× 2 64 ReLu

ConvTranspose 7× 7 1× 1 1 Tanh

Output : 256 × 256 × 3

TABLE II: The discriminator structure.
Input : 256 × 256 × 3

Layer Filter Stride Channel Activation

Conv 4× 4 2× 2 64 LeakyReLu

Conv 4× 4 2× 2 128 LeakyReLu

Conv 4× 4 2× 2 256 LeakyReLu

Conv 4× 4 1× 1 512 LeakyReLu

Conv 4× 4 1× 1 512 LeakyReLu

Output : 32 × 32 × 1

IV. EXPERIMENTS AND RESULTS

A. Experiments

The experimental data has shown in Section
II-B. The generator and discriminator optimizers
use the Adam algorithm with parameters β1 of
0.5 and β2 of 0.999. The decaying learning rate
starts at 0.002 and decreases linearly. The training
epoch is 50.

B. Results

The experimental results are shown in Fig. 4.
By comparing the six sets of images, we can
obtain that in the cycle consistency: x → G(x)
→ F(G(x)), the model learned the failure charac-
teristics under high occlusion rates, but its ability
to learn partial occlusion characteristics is rela-
tively weak. In the reverse cycle: y → G(y) →
G(F(y)), the obscured edges are easier to restore
in the failed images; The unobstructed areas are
also trained and merged with images from other
driving scenes.
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Fig. 4. Example results. (a) Input images. (b)
Generated images with single mapping. (c) Re-
constructed images with double mapping.

V. CONCLUSION

In this paper, we investigate the task of image
transfer between normal and failure states in vehi-
cle cameras. The goal is to generate a failed frame
from a normal image and then restore the failed



part to a normal frame. We separately collect
normal and failure frames as our source and
target data. Our results show that the differences
between normal and failure frames can be ad-
dressed using an image style transformer. We gain
experience in video inpainting and restoration for
vehicle cameras.
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