
Design of an Efficient Parallel Random Number Generator
using a Single LFSR for Stochastic Computing

Donghui Lee, Hyoju Seo and Yongtae Kim*

School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
{thebock12, hyoju, yongtae}@knu.ac.kr

Abstract—This paper proposes a parallel random number
generator (RNG) using a single linear feedback shift register
(LFSR) to generate two distinct random numbers, achieving
twice the operational speed of a traditional serial RNG. The
proposed RNG generates two distinct random numbers utilizing
an LFSR. When implemented in a 65-nm CMOS technology, the
proposed design leads to a 15.6% improvement in area and a
14.8% improvement in power efficiency, addressing the trade-off
between accuracy and energy efficiency in stochastic computing
(SC). Furthermore, the proposed design not only matches but
surpasses the performance of serial SC in an edge-detection digital
image processing application. Therefore, for enhanced hardware
efficiency and improved accuracy, the proposed parallel RNG
architecture can be effectively employed.

Index Terms—stochastic computing (SC), parallel random num-
ber generator (RNG), linear feedback shift register (LFSR)

I. INTRODUCTION

Stochastic computing (SC), which performs probability-
based computations, was first introduced in the late 1960s [1].
Unlike conventional binary computing, SC conducts operations
probabilistically, facilitating the development of error-tolerant
designs. These distinctive characteristics render SC widely ap-
plicable in various applications, including digital filters, image
processing, and neural networks [2]–[8]. SC offers a low-power
design paradigm by executing operations using simple logic
circuits such as AND gates or XOR gates. In contrast to
conventional binary computing, SC operates probabilistically,
making it suitable for developing error-tolerant designs. The
core of SC involves the use of a unary bitstream repre-
sented by probabilities, known as stochastic numbers (SN).
The conversion of binary numbers into SNs is carried out
by the stochastic number generator (SNG), which comprises a
comparator and a random number generator (RNG). The RNG
commonly employs a linear feedback shift register (LFSR)
due to its simplicity and favorable random characteristics [9].
The SNG process involves assigning a value of 1 to the SN
if the input binary number exceeds the randomly generated
number by the RNG; otherwise, it assumes a value of 0. There
are two encoding techniques for the SN bitstream: unipolar
and bipolar. In the unipolar representation, 0 and 1 of SN
have weights of 0 and 1, respectively, resulting in a range of
[0, +1]. On the other hand, in the bipolar representation, 0
and 1 of SN have weights of -1 and 1, respectively, leading
to a range of [-1, +1]. Consequently, the unipolar encoding
method exclusively facilitates the representation of positive
values, while the bipolar encoding method accommodates the
representation of both positive and negative signed values.
These encoding techniques provide flexibility in representing
different value ranges within the SC domain.

The accuracy of SC is determined by the bitstream length,
denoted as N . A stochastic number of length N , featuring

(a)

Counter

A

B

SNG
SN

n

n
RNGRNG

SC_Core
n

n-bit Binary Number

Counter

A

B

SNG
SN

n

n
RNG

SC_Core
n

n-bit Binary Number

Parallel 

Counter

A

B

SNG

n

n
RNGRNG

SC_Core

A

B

SNG

n

n
RNGRNG

A

B

SNG

n

n
RNGRNG

nn

SN0

SN1

SNn

n-bit Binary Number

Parallel 

Counter

A

B

SNG

n

n
RNG

SC_Core

A

B

SNG

n

n
RNG

A

B

SNG

n

n
RNG

n

SN0

SN1

SNn

n-bit Binary Number

(b)

Fig. 1. Stochastic computing architectures; (a) serial and (b) parallel.

equal weights for each bit, can represent a total of N + 1
distinct values. For instance, a length of 256 can express values
ranging from 0 to 1 in increments of 1/256. However, a notable
drawback of SC is its dependence on longer SN bitstreams to
achieve high accuracy, which consequently diminishes energy
efficiency. While an SN with identical weighted bits enhances
SC’s robustness to bit errors, it necessitates an exponentially
increased bitstream length. Specifically, achieving equivalent
precision for an n-bit binary number requires a 2n-bit SN
bitstream in SC. SC can be implemented in two main ways:
serial and parallel. Fig. 1 shows serial and parallel SC archi-
tectures. The parallel approach in SC serves as a strategic
solution to mitigate the prolonged delays inherent in serial
methods. However, this scheme exhibits exponential increases
in hardware consumption.

This paper proposes a new parallel RNG that utilizes a
single LFSR to generate two distinct random numbers. The
proposed parallel RNG achieves twice the operational speed
compared to traditional serial RNG, leading to efficient energy
improvements, with a 15.6% and a 14.8% improvement in area
and power, respectively. This innovative approach addresses the
trade-off between accuracy and energy efficiency in SC, making
it a promising advancement in the field of SC architectures.

II. PROPOSED PARALLEL RANDOM NUMBER GENERATOR

We address the problem of increased hardware consumption
resulting from individual RNGs being used to generate SN
simultaneously in parallel computing scenarios. To overcome
this challenge, we propose a novel architecture for a parallel
RNG that aims to increase parallel SC’s efficiency. The ar-



A

B

Stochastic NumberComp
n

n
0 or 1

n-bit Binary Number

A

B

Stochastic NumberComp

n
0 or 1

n

0
(n-1)-bit LFSR

n

1
n

n-bit Parallel Random Number Generator

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

L(n-1)-1 L(n-1)-2 L(n-1)-3 L0

CLK

D

Q

D

Q

D

Q

L(n-1)-1 L(n-1)-2 L(n-1)-3 L0

CLK

n-1

n-bit Parallel Random 

Number Generator

Fig. 2. Proposed parallel random number generator (RNG) architecture.

chitecture of the proposed parallel RNG is visually depicted
in Fig. 2, providing a detailed overview of its structure. This
design represents a departure from the conventional practice
of employing separate n-bit LFSRs for each parallel RNG. In
contrast, the proposed RNG embraces a more resource-efficient
strategy by utilizing a single (n− 1)-bit LFSR to concurrently
generate two distinct n-bit random numbers. The key idea lies
in establishing fixed values for the most significant bit (MSB)
of the generated random numbers. By assigning 0 and 1 to the
MSB, the design enables the simultaneous generation of two
unique n-bit random numbers. These fixed MSB values are
integrated with the output of the (n− 1)-bit LFSR, facilitating
the concurrent generation of two n-bit random numbers. The n-
bit random number with a fixed MSB of 0 uniformly distributes
values within the range of 1 to 2(n−1) − 1. In contrast, the
random number with a fixed MSB of 1 generates values ranging
from 2(n−1) + 1 to 2n − 1. The conventional implementation
of an n-bit LFSR typically involves XOR gates and registers.
In contrast, the proposed design optimizes this architecture by
reducing the number of XOR gates and registers, resulting in
a significant decrease in hardware consumption. For example,
an 8-bit LFSR conventionally requires three XOR gates and
eight registers. However, the proposed design with a 7-bit LFSR
requires only one XOR gate and seven registers. The proposed
parallel RNG design introduces a novel and efficient approach
to generating random numbers for parallel SC, effectively
mitigating the associated increase in hardware consumption.
By employing a single LFSR for the concurrent generation of
two random numbers, the design optimizes resource utilization,
offering a promising solution for parallel computing scenarios.
This novel method addresses the issues concerning hardware
usage while also offering a scalable and effective parallel SC
solution. The use of a single LFSR to produce two random
numbers streamlines the random number generation process,
leading to improved efficiency and reduced resource overhead.

III. EXPERIMENTAL RESULTS

To evaluate the proposed design, we assess the accuracy of
SC operations using the 8-bit RNG. The accuracy was measured

0

5

10

15

Serial Parallel
(conv.)

Parallel
(prop.)

Add

Sub

Mul

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

100

120

140

160

Serial Parallel
(conv.)

Parallel
(prop.)

(a) (b)

M
S
E
(1
0
-3
)

60

80

100

120

P
o
w
e
r(
μ
W
)

A
re
a
(μ
m
2
)

AreaArea
PowerPower
Area
Power

Fig. 3. Proposed parallel RNG performance: (a) mean squared error (MSE)
and (b) area and power consumption.

TABLE I
HARDWARE RESOURCE CONSUMPTION OF ROBERT CROSS-EDGE

DETECTOR HARDWARE.

RNG configuration Area [µm2] Power [µW ]

Serial
SC

no share 951.0 513.1
all share 369.6 156.2

Parallel
SC

all share 8bit LFSR 500.5 187.5
proposed design 477.1 168.9

by calculating the mean squared error (MSE) with all possible
inputs. Additionally, for evaluating hardware performance, we
implemented the various SC designs in Verilog HDL and
synthesized them using a 65-nm CMOS technology.

In Fig. 3(a), the MSE for addition, subtraction, and multi-
plication operations is presented for serial SC and parallel SC
using both the conventional 8-bit LFSR and the proposed par-
allel RNG design. For addition, utilizing the conventional 8-bit
LFSR in parallel SC leads to an approximate 1.1× increase in
MSE compared to serial SC. In contrast, the proposed parallel
RNG design demonstrates a remarkable 4× improvement in
MSE relative to serial SC. The proposed design yields an MSE
nearly identical to that of serial SC for subtraction operations,
showcasing its effectiveness. Conversely, parallel SC using the
8-bit LFSR shows a slight increase in MSE. In multiplication,
parallel SC using conventional methods indicates a 1.1× in-
crease in MSE compared to serial SC. However, the proposed
parallel RNG design stands out with a noteworthy 1.5× de-
crease in MSE, highlighting its superior performance. In Fig.
3(b), the area and power consumption of serial RNG, parallel
RNG, and the proposed RNG in 8-bit SC are illustrated. The
proposed design exhibits a 9.4% reduction in area compared
to serial RNG and a substantial 15.6% reduction compared to
parallel RNG. In terms of power consumption, the proposed
RNG design shows a 5.6% enhancement relative to the serial
RNG and a significant 14.8% improvement compared to the
parallel RNG. These results underscore the efficiency gains
of the proposed RNG design, positioning it as a promising
advancement in the realm of parallel SC.

To assess the practical performance of the proposed design,
we implemented hardware for the Robert cross-edge detector,
and Table I presents the corresponding area and power con-
sumption for various SC architectures. For generating the input
required for the Robert cross-edge detector operations, two
approaches were considered: all share, where a single RNG



Accurate

(Fixed-Point)

Serial SC: no_share

(PSNR : 1.66 dB)

Serial SC: all_share

(PSNR : 27.46 dB)

Parallel SC: all_share

(PSNR : 26.44 dB)

Parallel SC: proposed

(PSNR : 28.44 dB)

Fig. 4. Output images with PSNRs of SC-based Robert cross-edge detector.

is employed to generate SN, and no share, where individual
RNGs are used. When comparing the proposed design to serial
SC with no share, there is a substantial 49.8% improvement in
area and a significant 67.1% reduction in power consumption.
This emphasizes the efficiency gains achieved by the proposed
design in comparison to the traditional serial SC configuration.
Conversely, when compared to the all share approach, there is
a 29.1% increase in area and an 8.1% increase in power for
the proposed design. The adoption of a parallel methodology
in the proposed design leads to a simultaneous increase in both
area and power consumption compared to the existing serial SC
architecture. This enhancement in computational resources is,
however, accompanied by a trade-off, as the delay required for
calculations is halved compared to the serial SC configuration.
Furthermore, in comparison to parallel SC with all share, the
proposed design demonstrates a decrease of 4.7% in area and
9.9% in power consumption. This exhibits the optimization
achieved by the proposed design in terms of resource utilization
and power efficiency in a parallel computing context.

Fig. 4 illustrates output images processed with accurate fixed-
point arithmetic alongside those processed with both serial and
parallel SC. To assess image processing performance, the peak
signal-to-noise ratio (PSNR) was employed, comparing output
images processed with accurate fixed-point arithmetic to those
processed with SC methodologies. Given that subtraction oper-
ations in SC necessitate two correlated inputs, the PSNR for SC
with the no share RNG is observed to be the lowest. However,
when compared to serial SC employing the all share RNG,
the proposed design exhibits a notable 3.6% improvement in
PSNR. This improvement suggests that the proposed parallel
RNG design contributes to enhanced accuracy and quality in
image processing applications compared to traditional serial
SC configurations. Furthermore, when contrasted with parallel
SC utilizing an 8-bit LFSR, the proposed design demonstrates
a substantial 7.6% enhancement in PSNR. This significant
improvement underscores the efficacy of the proposed parallel
RNG design in elevating image processing performance in SC
domain. The higher PSNR values indicate superior fidelity and
quality in the output images processed using the proposed
design, highlighting its potential for improving the accuracy
of image processing applications.

IV. CONCLUSION

In this paper, we introduced an energy-efficient parallel RNG
utilizing an LFSR to generate two distinct random numbers.
When compared to the serial RNG, the accuracy of the op-
eration results shows a 4× improvement in addition and a

1.5× improvement in multiplication. Additionally, subtraction
shows the same result. Implemented in a 65-nm CMOS tech-
nology, the proposed RNG exhibits significant advancements,
including a 15.6% reduction in area and a 14.8% decrease in
power consumption compared to existing parallel RNGs. When
extended to image processing applications, the proposed RNG
design, despite an increase in both area and power compared to
serial SC, demonstrates the ability to execute operations twice
as fast as the conventional delay. This accelerated processing
capability is a crucial asset for real-time applications, contribut-
ing to improved overall efficiency. The PSNR results further
underscore the enhanced image processing performance of the
proposed RNG design compared to the serial SC method. This
improvement in image quality establishes the proposed design
as a promising solution for image processing applications. With
notable reductions in area and power consumption, coupled
with accelerated processing speeds and enhanced image pro-
cessing results, the proposed RNG emerges as a promising
solution for parallel SC applications. Its efficiency and per-
formance enhancements make it a valuable contribution to the
field, with potential applications in various parallel computing
scenarios.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (RS-2023-00279770).

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems, pp. 37–172. 1969.
[2] Y. Liu et al., “A survey of stochastic computing neural networks for

machine learning applications,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 7, pp. 2809–2824, 2021.

[3] S. Hu et al., “Hybrid stochastic ldpc decoder with fully correlated
stochastic computation,” IEEE Trans. on Circuits Syst. I: Reg. Papers,
vol. 69, no. 9, pp. 3643–3654, 2022.

[4] S. Liu and J. Han, “Dynamic stochastic computing for digital signal
processing applications,” in Proc. Des. Autom. Test Eur. Conf. Exhib.
(DATE), pp. 604–609, 2020.

[5] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic Circuits for Real-Time
Image-Processing Applications,” in Proc. Design Autom. Conf. (DAC),
(New York, NY, USA), pp. 1–6, 2013.

[6] D. Lee, J. Baik, and Y. Kim, “An accurate and efficient stochastic
computing adder exploiting bit shuffle control scheme,” in Int. SoC Design
Conf. (ISOCC), pp. 51–52, 2022.

[7] D. Lee, J. Baik, and Y. Kim, “Enhancing stochastic computing using
a novel hybrid random number generator integrating lfsr and halton
sequence,” in Int. SoC Design Conf. (ISOCC), pp. 7–8, 2023.

[8] D. Lee and Y. Kim, “Towards quantized stochastic computing by lever-
aging reduced precision binary numbers through bit truncation,” in Proc.
Int. Conf. Comput. Design (ICCD), pp. 419–422, 2023.

[9] A. Zhakatayev et al., “An efficient and accurate stochastic number gener-
ator using even-distribution coding,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 12, pp. 3056–3066, 2018.


