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Abstract—Physical Wireless Parameter Conversion Sensor Net-
works (PhyC-SN) is converts sensor information into a carrier
wave and transmits it to aggregate information from many
sensors at a high speed. The authors established a method to
detect multiple sensors accessing within a specific frequency by
utilizing frequency offsets to check whether the signals of multiple
sensors collide within the frequency. However, it is difficult to
identify the number of sensors accessing at the same time. In
this study, we established a method to use fluctuations in the
received energy spectrum due to sensor-specific frequency offsets
as a feature to identify the number of sensors and clarified the
identification accuracy for up to four transmitting sensors.

Index Terms—PhyC-SN, frequency offset, window function,
Random Forest, collision detection

I. INTRODUCTION.

In recent years, the development of wireless communication
technology has accelerated the spread of IoT [1]. The IoT
has led to active research on accurate and high-speed com-
munication technologies to realize environmental monitoring
[2]. As a high-speed communication method, simultaneous
multiple connections, which is a technology to communicate
from many sensors at the same time, has attracted atten-
tion. In the conventional packet communication method, in
order to recover individual sensor information accurately and
with high dimensionality, IDs for each sensor are assigned
to packets and collision avoidance is performed for each
sensor [3]. Therefore, as the number of sensors increases,
the communication time and cost increase. In this paper, we
focus on a Physical Wireless Parameter Conversion Sensor
Networks (PhyC-SN) that can aggregate information from a
large number of sensors [4]. This eliminates the ID infor-
mation that indicates the source of each transmission and
reduces the communication overhead. Therefore, PhyC-SN is
a communication method that improves communication speed
and reduces communication volume, although the source of

the aggregated information cannot be identified because the
sensor ID cannot be obtained. As an example of the use
of PhyC-SN, a new communication method, a method of
positioning the source of radio emission has been proposed
based on the distribution of sensor information, which is the
relative relationship between simultaneously notified sensor
information [5].

When multiple sensors acquire the same sensor information
in PhyC-SN, each sensor transmits on the same channel. A
channel here is a frequency band that separates the available
frequency bands, and one channel corresponds to one sensing
data. In receiver processing, the number of sensors that have
transmitted is identified by using the feature that the amount
of energy in the received signal for each channel increases
with the number of sensors that have transmitted [6]. In this
case, there is a method to identify the number of sensors
by evaluating the amount of energy at each frequency and
setting a threshold value according to the number of sensors.
However, if fluctuations in power occur due to multipath
fading or out-of-phase synthesis of signals from multiple
sensors, the identification accuracy is greatly degraded. On
the other hand, by using not only the power characteristics
but also the variance value of the phase transition of the
signal for identification, high identification accuracy can be
achieved when the number of transmitting sensors is two or
less [7]. However, with this method, the identification accuracy
remains degraded when the number of transmitting sensors is
three or more, and the accuracy of the distribution of sensor
information when the number of aggregate sensors increases is
not high. Therefore, a method with high identification accuracy
is required even when the number of sensors increases.

In this study, we evaluated the discrimination accuracy of
PhyC-SN with the addition of new features when the number
of collision sensors was increased to four. Long interval FFT



Fig. 1. Schematic diagram of PhyC-SN

was performed, and the frequencies that could be visualized
were subdivided as the frequency resolution of each channel
was improved [8]. From these frequencies, four new features,
kurtosis, skewness, number of peak points, and energy value
of each frequency component, were added to improve the
discrimination accuracy.

II. SENSOR NUMBER IDENTIFICATION BY PHYC-SN

A. PhyC-SN

An overview of PhyC-SN is shown in Figure 1. The first
is to create a correspondence table linking sensing data and
transmission channels. In Figure 1, the sensing data is assigned
to each channel as temperature information. Second, sensors
in the observation area send sine waves of the frequency of the
channel corresponding to the sensing data to the aggregation
station, and the aggregation station processes the signals from
the third and subsequent steps. The fourth process reconstructs
the sensing data and the number of sensors based on the
correspondence table created in the first process, and obtains
statistical data.

B. Collision Detection

In PhyC-SN, power was used to identify the number of sen-
sors. However, various factors in wireless propagation, such as
multipath fading and out-of-phase composition of transmitted
signals from multiple sensors, cause the power to fluctuate,
degrading the identification accuracy. Therefore, the authors
proposed a collision detection method that adds phase variance
as a new feature to identify up to two sensors [7]. The first
method utilizes the frequency offset that occurs spontaneously
for each sensor. Figure 2 plots the delayed detection signal
points on the IQ plane according to the number of sensors.
In the case of one sensor, the signal points show the same
amount of phase transition due to a single frequency offset. In

Fig. 2. Arrangement of signal points per number of sensors

the case of two sensors, two frequency offsets are included,
so that the signal points show variations due to the power
difference between the signals of each sensor. These are used
as the variance values to create features that are superior
for discrimination. Second, by making the signal points for
which the variance values are calculated selective [9], we
created a feature that is more dominant for discrimination. The
third is the suppression of intercarrier interference by using
a long interval FFT with a Blackman-Harris window. Inter-
carrier interference must be suppressed because of the natural
frequency offset. Therefore, we use a long-interval FFT and a
Blackman-Harris window [8].

C. Identification of the number of collision sensors

The authors had discriminated up to two sensors, but the
accuracy of discrimination for three or more sensors was not
high. In this study, we improved the identification accuracy
by adding new features. The figure 3 shows the energy value
of each frequency in one channel when the long-interval FFT
is performed. The long interval FFT improves the frequency
resolution and allows visualization of multiple frequencies
within a single channel. In Figure 3, 99 frequencies are sub-
divided within a single channel, and this is the case for three
transmitting sensors. Each transmitting sensor has a large peak,
which can be seen as a separate peak due to the frequency
offset of each sensor. The energy per frequency subdivided in
the channel by the long interval FFT is collectively defined
as the energy spread. This energy spread was converted into
three indices and utilized as features. The first is kurtosis.
The kurtosis is a statistic that measures the sharpness of the
spectrum within a channel. When the number of transmitting
sensors is large, the kurtosis tends to be low because of the
spread of the spectrum in the channel. The second is skewness.
Skewness is another statistic that measures the bias in the
channel. When the number of transmitting sensors is small,
the probability that the spectrum in the channel is biased to the
left or right is high, and the value tends to be low. The third is
the number of peak points in the spectrum, which depends on



Fig. 3. Energy value per frequency BIN within one channel

the number of sensors, since each sensor has a higher power.
The ”peak” in the figure 3 indicates the peak point, and since
there are three transmitting sensors, the number of peak points
is also three. The three features, kurtosis, skewness, and peak
point number are added as features to discriminate the number
of sensors, since they tend to be different depending on the
number of sensors.

III. SIMULATION EVALUATION

A. simulation parameters

The simulation environment was created using Matlab pro-
vided by MathWorks. The simulation parameters are shown in
Table I. The radio environment is assumed to be a Rayleigh
fading environment with four receiver antennas in the ag-
gregate. The frequency offset is generated by a uniform
random number. The number of transmitted symbols is 100,
and the FFT interval is the number of transmitted symbols
minus 1, so the long-interval FFT interval is 99 symbols.
The window function is a Blackman-Harris window. The
number of transmitting sensors is limited from 0 to 4. In this
case, only one transmission channel is used, and inter-carrier
interference is assumed to have no effect. Six features are used
for identification: energy value, phase variance, energy spread,
kurtosis, skewness, and peak point number. Random Forest is
used as the classifier.

Power detection and collision detection are used as conven-
tional identification methods. We compared the discrimination
accuracy by increasing the number of features between the
conventional method and the proposed method.

B. Feature Analysis

Here, we show the trend of the features when the number of
transmitted symbols is 100 and the SNR is 20 dB. In Figure 4,
the distributions of kurtosis and skewness are shown by box-
and-whisker plots according to the number of sensors. Both of

　
TABLE I

SIMULATION PARAMETERS

Data type Data
Number of receiving antennas 4 antennas

Fading environment Rayleigh fading
Frequency offset [-0.4 0.4] uniform random

number per sensor
Number of transmitted symbols 100 symbols

Window function Blackman-Harris window
Number of transmitting sensors 0 - 4

Fig. 4. Box-and-whisker diagram of kurtosis and skewness for each sensor

the features tend to become smaller as the number of sensors
increases. Figure 5 shows the number of peak points detected
for each number of sensors. The number of sensors and the
number of peak points roughly coincide, but there are cases
where the number of peak points is smaller than the number
of sensors. This may be due to the fact that the difference in
frequency offsets between sensors is so small that two spectral
peaks overlap and appear as a single peak. Figure 6 shows the
difference in the importance of the features used to identify
the transmitting sensors. The order of the features used for
identification is from the top to the bottom. The size of each
color indicates the importance of the feature for each number
of transmitting sensors. In this case, the importance of the
sharpness is the highest, indicating a high importance when
there is a transmitting sensor. However, when there is no green
transmitting sensor, the importance of the kurtosis is not so
high. When there is no transmitting sensor, the importance of
the energy value is the highest. The feature of phase dispersion
is also important for the identification of a single transmitting
sensor. The kurtosis, skewness, and the number of peak points,
which are newly added as features in this study, are highly
important and necessary for identification.

IV. SIMULATION RESULTS

The simulation results are shown in Fig. 7.”Conventional
method 1” is power detection, ”Conventional method 2” is



Fig. 5. Number of peak points per sensor

Fig. 6. feature importance

collision detection, and ”Proposal method” is the proposed
method with the addition of four features from collision
detection: energy spread, kurtosis, skewness, and peak point
count.

The following is a plot of the relationship between SNR and
discrimination accuracy from the three methods. The proposed
method showed higher discrimination accuracy than the two
conventional methods .In addition, the identification accuracy
of the proposed method exceeds 90% when the SNR is more
than 8, while the identification accuracy of the conventional
method cannot exceed 80%.

V. SUMMARY

Identification of the number of collision sensors in PhyC-SN
was possible only up to two sensors. In this study, by adding
four new features, we were able to achieve more than 90%
identification accuracy up to four sensors. The discrimination
accuracy is not perfect, but it is still high. Future tasks are
to further improve the discrimination accuracy and to increase
the number of sensors that can be discriminated.

Fig. 7. Identifying success rates
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