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Abstract—Recently, various efforts have been made to utilize
Unmanned Aerial Vehicles (UAVs), even for application tech-
nologies expected in the future including positioning/localization.
For examples, UAVs can be used to detect the location of
victims in disaster areas to facilitate the rescue support. They
can be also used to estimate the position of illegally emitted
radio wave sources for monitoring proper radio wave usage.
In conventional studies, the positioning/localization of ground-
based radio wave sources were conducted using the positional
fingerprinting method by placing multiple radio-frequency (RF)
sensors at predetermined locations in an urban environment.
In this paper, time-series based fingerprinting method is further-
more proposed using aerial RF sensors. Specifically, the proposed
low-cost and high-accuracy location estimation method is realized
by flying a single UAV as a receiving sensor on a predetermined
trajectory and expanding the data used in the original location
fingerprinting method with respect to the time axis to achieve a
time-series data. Simplified validation experiments are conducted
to show the effectiveness of the proposed method in this paper.

I. INTRODUCTION

In recent years, communication devices such as smartphones
have become widespread, and the Internet-of-Things (IoT), in
which various things are connected to the Internet, has been
proliferated. In conjunction with this trend, wireless communi-
cation technology has been advancing with the launch of 5G
(5th generation mobile communication system) services and
the practical application of LPWA (Low Power Wide Area),
a wireless communication technology featuring power-saving
long-distance communication that is expected to be used in
the IoT. Among the advances in wireless communication
technology, services using location information of objects and
people have been attracting attention, and familiar examples
of GPS-based services are map applications and smartphone
games such as Pokemon GO. There are also attempts to use
location information as big data. In the Great East Japan
Earthquake, the situation of the inundation area was unclear
at the time of the tsunami, but the location information of a
car navigation system was analyzed and found to be congested
due to the gridlock phenomenon. [1] provides another example
of monitoring locations of communication devices at factories
to predict operating conditions and use this information to
make investment decisions. In addition, location information
is indispensable for the realization of more advanced AR/VR
technology and automatic driving technology, which are cur-
rently being actively researched.

GPS is the most common method for estimating location
information, which is based on the difference of time arrival
sent from four or more GPS satellites. Although GPS can
provide accurate location estimation in open outdoor envi-
ronments with Line-of-Sight (LoS), the accuracy of location
estimation deteriorates significantly in urban environments
such as tunnels, underground, inside buildings, and urban
areas with many buildings due to the incurred NLoS (non-
Line-of-sight) environment between GPS sattelites and the
receivers [2]. There were also other geometric approaches
to estimate the location using information angle of arrival
(AOA) etc., but the estimation accuracy is similarly degraded
in NLoS environments [3]. To improve the estimation accuracy
even in NLoS environments, a statistical estimation method
called the location fingerprint method using Unmanned Aerial
Vehicles (UAVs) had been proposed to increase the probability
of LoS in urban environments [4]. This conventional work
proposed to use UAVs as Rx sensors for outdoor location
estimation in which multiple UAV sensors are hovered at
predetermined positions. The advantage of this method is
that it can improve localization estimation accuracy compared
to such conventional cases where sensors are placed on the
ground owing to the improved LoS condition. On the other
hand, there are some drawbacks including the computational
cost required to optimize the placement of UAV sensors and
the fact that the mobility of UAVs were not fully exploited
since the UAVs just hover at fixed points.

In this study, we propose a time-series position fingerprint-
ing method that extends position fingerprint data to the time
axis by using UAV sensors orbiting on a predetermined trajec-
tory, aiming to improve the accuracy of position estimation.
For the position estimation algorithm, several machine learning
methods of different regression models are used to improve the
position estimation accuracy. Especially, simplified small-scale
experiments were conducted to validate the proposed method.

This paper is organized as follows. In Section 2, after
summarizing existing localization techniques, our proposed
method is presented. In Section 3, the proposed method
is evaluated by simplified small-scale experiments. Finally,
Section 4 concludes our findings.



Fig. 1. Two phases of fingerprint-based localization method [8], [9].

II. LOCALIZATION METHODS

A. Localization Methods of Unknown Emitters

There are two main types of methods for estimating the
location of a radio transmission source: an active method in
which the target terminal receives radio waves emitted by a
beacon whose absolute location is known and estimates its
own location and a passive method in which a sensor receives
radio waves transmitted by the target terminal and the system
estimates the terminal’s location. A well-known example of
the former is the Global Positioning System (GPS), but it is
not suitable for estimating the location of illegal radio wave
sources because of the hardware limitation of a GPS chip non-
necessarily equipped in the target terminal and the need for
cooperation between the localization system and the terminal
to be estimated. For this reason, the monitoring of illegal radio
waves often employs the latter method in which the location
is estimated by the system using information on radio waves
emitted by the target terminals.

The radio wave information used for location estimation
includes the received signal strength indicator (RSSI), time
difference of arrival (TDOA), and angle of arrival (AOA).
Localization using the AOA is called triangulation, which
is also used in DEURAS-D, one of the above-mentioned
DEURAS [5] programs. However, such a geometric method
assumes that the distance between the terminal and the sensor
is in an LoS condition, but in environments with many
scattering objects, e.g., urban areas, it is easy to become NLoS
and the accuracy of localization is greatly degraded [6].

Therefore, this paper uses the location fingerprinting
method, i.e., a statistical location estimation method, to enable
location estimation even in NLoS environments. The next
section provides an overview of the fingerprint localization.

B. Fingerprint Localization

Fingerprint localization is a method that collects position-
dependent information as fingerprints and statistically esti-
mates the position by pattern matching [7]. As shown in
Figure 1, fingerprint-based localization is largely divided into a
learning phase and an estimation phase. In the learning phase,
a location fingerprint database is constructed from the propa-
gation characteristics of a radio wave source whose location
and parameters are known in advance, which is observed by

a sensor while moving. In the estimation phase, radio waves
from an unknown target are observed and their positions are
estimated by pattern matching with the positional fingerprint
database constructed in the learning phase. This method is
expected to further improve the accuracy of localization due
to recent advances in statistics such as machine learning [10].

In outdoor location estimation, in addition to location fin-
gerprinting based on RF signals, there are also methods using
visual fingerprinting based on images captured by mobile
terminals or motion fingerprinting based on motion sensors
such as acceleration, electronic compass, and gyroscope [11].
These methods have significant drawbacks e.g. the perfor-
mance is easily affected by surrounding environments and
weather conditions and also the applicable distance range is
limited.

In this study, an RF fingerprint called RSSI (Received Signal
Strength Indicator) is used as location fingerprint because
it is easy to implement in hardware and does not require
time synchronization. When the position coordinate of the k-
th emitter is uk and the RSSI observed at the n-th sensor
is Pn(uk) [dB], the fingerprint vector FDB

k is expressed as
follows where N denotes the total number of deployed sensors.

FDB
k = [P1(uk), . . . , PN (uk)]. (1)

A regression process will be applied over the fingerprint
database FDB

k . In the estimation process, the RSSI fingerprints
i.e. P target

∀n [dB] observed by the n-th sensor will be compared
to the regression function to predict the location of the
unknown emitter.

C. UAV Sensor Enabled Time-Series Fingerprint Localization

To further improve the estimation accuracy even in NLoS
environments, [4] proposed to use UAVs working as RF
sensors to increase the probability of LoS in urban environ-
ments. In other words, multiple UAV sensors are hovered at
predetermined positions to measure the RF fingerprints in the
training phase and also in the estimation phase. Owing to the
enhancement of LoS condition, this method is expected to
improve localization estimation accuracy compared to conven-
tional case where sensors are fixed on the ground. However,
there are still some drawbacks including the computational
cost required to optimize the placement of UAV sensors, the



Fig. 2. The proposed UAV sensor.

cost of deploying more sensors for higher estimation accuracy
and the fact that the mobility of UAVs were not fully exploited
since the UAVs just hover at fixed points. To solve this
issue, this paper proposes a time-series location fingerprinting
method that a single UAV sensor flies over a predefined orbit
to collect many RF fingerprint time-series samples on its
trajectory as shown in Fig. 2. This proposed method aims to
achieve higher accuracy at a lower cost than existing methods.

When the position coordinate of the k-th emitter is uk

and the RSSI observed at the t-th time of the UAV sensor
is Pt(uk) [dB], the fingerprint vector F̃DB

k is expressed as
follows where T denotes the total number of fingerprint
samples measured on the UAV’s orbit.

F̃DB
k = [P1(uk), . . . , PT (uk)]. (2)

Compared to Eq. (1), the proposed method can virtually
increase the number of RF sensors by arbitrarily selecting
a large enough samples T when the UAV patrols over its
trajectory. Also, since only a single UAV is employed, lower
facility cost can also be expected.

A regression process will be applied over the fingerprint
database F̃DB

k where R denotes a specific regression function
e.g. Gaussian process.

MDB
(
F̃EST,u

)
= R

(
F̃DB

∀k ,u∀k

)
. (3)

In the estimation process, the RSSI fingerprints i.e. P target
∀t

[dB] observed at the t-th sampling time will be compared to
the regression database to predict the location of the unknown
emitter.

û = argmin
u

MDB
(
F̃target,u

)
. (4)

III. SIMPLIFIED VALIDATION EXPERIMENT

A. Experiment Setup

Regardless of a proposal of a localization method for out-
door environment, it is difficult to conduct evaluation experi-

Fig. 3. Line tracer’s route.

ments in a real environment since it is currently hard to make a
UAV patrolling a wide urban area e.g. our university’s campus
due to legal restrictions in Japan etc. Therefore, we conducted
small-scale experiments in our university’s gymnasium using
a line tracer equipped with a WiFi module imitating a UAV to
evaluate the proposed method. In an urban environment, the
UAV is considered to be flying and the Tx is on the ground, but
in our experiments, the line tracer runs on the floor while the
Tx is located at a high position instead. Therefore, although
the line tracer is not flying, it is considered to be a UAV and
will be referred to as a UAV in this section.

Fig. 4. Tx used in the experiment.

TABLE I
EXPERIMENT SPECIFICATION

Wireless device Raspberry Pi 4 Model B

Line tracer model Picar-4WD

Antenna model WN-G300UA

Central frequency 2.412 GHz

Specification IEEE 802.11n

Emitter height 1.6 m

UAV antenna height from ground 0.1 m

UAV trajectory’s radius 3 m

Gymnasium area 43.4× 34.6m2



Fig. 5. Experiment without obstacles.

Table I shows the equipment used in this experiment. The
Picar-4WD is a robot kit equipped with gray-scale sensors,
ultrasonic sensors etc. and can be controlled using a Raspberry
Pi. Figure 3 shows how the UAV runs.

The UAV was equipped with a Raspberry Pi 4 and com-
municated using an external WiFi antenna connected to the
Raspberry Pi 4. RSSI was measured as the fingerprint infor-
mation. The RSSI measurement frequency was about 1000
points/circle. These RSSI measurements were not synchro-
nized with each revolution of the UAV, and varied slightly.

As with the UAV, another Raspberry Pi 4 was used as the
radio wave source (Tx), and an external WiFi antenna was
used for communication. The Tx was fixed at a height of 1.6 m
using a tripod to imitate the height difference between the UAV
and the radio wave source in an urban environment. Figure 4
shows the Tx used in the experiment.

B. Performance Analysis

1) Experiment Results in Environments w/o Obstacles:
We measured time-series position fingerprint information in
a simple environment without any obstacles in a gymnasium
and estimated the position using the proposed method.

Fig. 6. Measurement results without obstacles.

Fig. 7. Experiment with obstacles.

In this experiment, Tx was placed on a 36-m line in a
gymnasium with no obstacles, and moved every 0.5 m step
each time the UAV completes a circle orbit in the gymnasium,
acquiring time-series fingerprint information for training pur-
poses and creating a regression model for localization. In the
same way, we randomly measured at 10 positions of unknown
Tx on the line to collect time-series fingerprints for location
estimation of the unknown Tx.

Figure 6 shows the processed measurement data. A position
estimation regression model was created using the measure-
ment data. The regression model takes as input values the
time-series position fingerprint information (100 dimensions)
for one UAV orbit and outputs the estimated coordinates of
Tx. There are various possible machine learning algorithms for
creating a regression model for position estimation, including
regression tree models, neural network regression, Gaussian
process regression, SVR etc. and the algorithm suitable for
position estimation may vary depending on the type of fin-
gerprint information used and the environment in which the
position fingerprint is measured.

In this experiment, Gaussian process regression, regression

Fig. 8. Measurement results without obstacles.



TABLE II
LOCALIZATION RESULTS IN ENVIRONMENT WITHOUT OBSTACLES.

Regression model Training RMSE Estimation RMSE

Gaussian process regression 1.47 m 2.44 m

Regression tree model 1.96 m 4.31 m

Neural network regression 2.26 m 7× 107 m

tree model, and neural network regression were trained and the
location estimation accuracy of each model was compared.
Table II shows the location estimation performance of each
model.

The table shows that the Gaussian process regression has
the best estimation accuracy, with an estimation error of 2.44
m, or 6.8% for a measurement range of 36 m. The neural
network regression has a much lower estimation accuracy
than the Gaussian process regression. The accuracy of the
unknown location estimation for the neural network regression
was significantly lower. This indicates that the model was over-
training with respect to the training data.

2) Experiment Results in Environments w. Obstacles: In
this section, we evaluate the proposed method by performing
the same RSSI-based position estimation in an environment
where obstacles are placed in the center of the UAV’s orbit.

In this experiment, we measured training data in the same
environment as mentioned in previous section, with an obstacle
(ping-pong table) placed in the center of the UAV’s circular
trajectory as shown in Figure 7, and randomly measured at
10 positions of unknown Tx on the line to collect time-series
fingerprints for location estimation of the unknown Tx. Next,
we used the data shown in Figure 8 to train regression models
for location estimation. The location estimation errors for each
regression model are summarized in Table III.

Table III shows that the Gaussian process regression model
provides the most accurate location estimation, even in the
presence of obstacles. The neural network regression did not
over-learn like in the case without obstacles and was more
accurate than the regression tree model. When comparing the
RMSE of the Gaussian process regression in both scenar-
ios, it is interesting to find out that the performance in an
environment with obstacles is better than that in the same
environment with no obstacle. It indicates that the proposed
method in this paper may be a good solution for localization in
NLoS environments, which had long been an issue of existing
localization methods like triangulation.

IV. CONCLUSION

In this paper, we propose a time-series location fingerprint-
ing method to improve the accuracy of outdoor location esti-
mation of radio sources. Existing location estimation methods
based on the location fingerprinting method using hovering
UAVs have problems with degraded location estimation ac-
curacy in NLoS environments and difficulty in optimizing
the positioning of the UAVs. The proposed method in this
paper extends the position fingerprinting method to the time

TABLE III
LOCALIZATION RESULTS IN ENVIRONMENT WITH OBSTACLES.

Regression model Training RMSE Estimation RMSE

Gaussian process regression 1.11 m 2.08 m

Regression tree model 1.78 m 3.87 m

Neural network regression 2.31 m 3.01 m

axis by using UAVs to patrol, thereby simplifying the UAV
deployment and improving the accuracy of obtaining position
fingerprint information in the LoS environment.

Simulations of the proposed method in an urban area
showed an improvement in location estimation accuracy com-
pared to existing methods. In a simplified small-scale ex-
periment conducted at a gymnasium, we confirmed that the
proposed method can achieve an estimation accuracy within
7% of the measurement range. Comparative evaluation with
and without obstructions showed that the proposed method
improved position estimation accuracy in the presence of
obstacles (an NLoS environment) compared to the absence
of such obstructions (a LoS environment), confirming the
possibility that the proposed method is suitable for outdoor
position estimation in urban areas where LoS condition is hard
to be attained.
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