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Abstract—Advancements in text-to-speech (TTS) synthesis have
primarily focused on natural speech and speech intelligibility,
but integrating nuanced emotional expressiveness and speaker
variability remains a challenge, especially in dynamic environ-
ments such as customer service and in assistive speech tech-
nologies. This paper introduces a direct text input approach
over conventional phoneme-first methods, such as FastSpeech,
enhancing user experience. We integrate the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) along with
pitch, energy, and duration in the variance adaptor of the
FastSpeech 2 model to deepen the emotional expressiveness of
speech. In this paper, we propose a Multi-speaker Emotional
Text-to-speech Synthesis System (METTS) which allows users
to input desired text, select from various speaker voices, and
choose emotional tones ranging from happiness to sadness,
surprise, neutrality, and anger. Unique to METTS is the feature
that allows users to integrate personal voice datasets, making it
highly customizable. We assess speech quality and naturalness
with the NISQA model, achieving a 3.72±0.78 MOS score for
multi-speaker evaluation and 4.09±0.65 for individual speaker
voices. The paper details METTS’s architecture, enhancements
to FastSpeech2, and methods for embedding emotional and
speaker variations.

Index Terms–Medical AI, System Architecture, Micro-
services, Digital twin

1. Introduction

Text-to-speech (TTS) synthesis, the artificial production
of human speech from text input, has undergone a remark-
able transformation in recent years, becoming an indispens-
able tool in a variety of applications, ranging from virtual
assistants to accessibility technologies. The core objective
of TTS systems is to convert written text into spoken words
in a way that is not only accurate but also natural-sounding.
A key focus in the development of TTS systems has been
enhancing the naturalness and expressiveness of the synthe-
sized speech, aiming to make it more relatable and engaging
for users.

In the field of TTS, significant strides have been made
with the development of advanced neural network-based

Figure 1. General TTS Reference Architecture.

models such as Tacotron [1] and FastSpeech [2]. These
models represent a leap forward in synthesizing high-quality,
natural-sounding speech. Tacotron, a sequence-to-sequence
model with attention, has been notable for its ability to
produce highly natural speech. However, it requires con-
siderable computational resources, especially in terms of
processing time, which can be a limiting factor in real-
time applications. On the other hand, FastSpeech emerged
as a solution to the real-time speech synthesis challenge. By
decoupling text analysis and speech synthesis, FastSpeech
can generate speech significantly faster than real-time, mak-
ing it more suitable for scenarios where inference speed
is crucial. Despite these advancements, both models have
their limitations, particularly when deployed in high-load
environments such as large social networks or customer
service systems where rapid response times are critical.
Additionally, a significant challenge that persists in current
TTS technologies, including Tacotron and FastSpeech, is
their limited capability in delivering emotionally expressive
speech and in adapting to diverse speaker voices, particularly
in user-specific contexts.

In this paper, we introduce METTSpeech, a novel
FastSpeech2-based TTS system, distinguished by its inte-
gration of the extended Geneva Minimalistic Acoustic Pa-
rameter Set (eGeMAPS) [3]. eGeMAPS plays a crucial role
in our system by providing a comprehensive set of acoustic
parameters specifically designed for effective and relevant
emotion feature extraction. This allows our TTS system to
capture and reproduce a wide range of emotional states in
speech, significantly enhancing the emotional expressive-



Figure 2. METTS Request-Response processing sequence diagram.

ness and naturalness of the output. Our proposed system
also offers customizable user-specific voice style integra-
tion, enabling users to train their personal voice datasets
with our Multi-speaker Text-to-Speech System (METTS).
We focus on providing fast processing speed for voice
synthesis by implementing istftnet melspectrogram vocoder
[4] in METTSpeech architecture which reduces redundant
estimations of high-dimensional spectrograms. This feature,
combined with the proposed METTSpeech model, ensures
that our system not only maintains high-quality speech
synthesis but also excels in processing speed, making it
ideal for demanding environments. By facilitating direct text
input and leveraging eGeMAPS for advanced emotional fea-
ture extraction, our model innovatively enriches the speech
synthesis process. This advancement extends the potential
applications of TTS systems, accommodating personalized
and emotionally nuanced voice interactions in areas ranging
from tailored customer service to bespoke content creation
on social media platforms.

2. Related Work
In recent years, machines have managed to master the

art of generating speech that is understandable by humans.
However, the linguistic content of an utterance encompasses
only a part of its meaning. Affect, or expressivity, has the
capacity to turn speech into a medium capable of con-
veying intimate thoughts, feelings, and emotional—aspects
that are essential for engaging and naturalistic interpersonal
communication [5]. Current state-of-the-art deep learning
methodologies focus on development of TTS systems and
have been enhancing the naturalness and expressiveness of
the synthesized speech.

Statistical parametric speech synthesis (SPSS) [5] adopts
the three-stage model presented in Fig. 1 (inspired from [6]),

namely, the use of text analysis to suitable linguistic repre-
sentations of the target utterance, the prediction of speech
parameters using an acoustic model, and the final waveform
synthesis (vocoding). In particular, the text analysis module
includes necessary preprocessing steps (text normalization,
graphemeto-phoneme conversion etc.) followed by the ex-
traction of all relevant features which are composed in
lingustic analysis, such as phonemes, duration, or part-of-
speech tags. Those features, along with the accompanying
speech parameters, are fed to a statistical Machine Learn-
ing (ML) model that learns a mapping from linguistic to
acoustic feature wave form generation (e.g., the fundamental
frequency, spectrum, or cepstrum), finally generating the
speech.

2.1. Emotional Speech Synthesis (ESS) Pipeline

A traditional approach of TTS system follows three
steps:

1) a text analysis module that converts the input text
to appropriate linguistic features

2) an acoustic model that converts those features to
acoustic features

3) a vocoder, which generates the final utterance [6]

Incorporating emotions into this pipeline is primarily done
in two ways: either an emotional voice conversion module is
tasked with adapting the emotion of the synthesized speech,
or the transformation is made as an intermediate step before
vocoder processing [7]. Following a similar trend as TTS,
ESS (Emotional Speech Synthesis) transitioned to a data-
driven paradigm with the advent of SPSS. In this context,
ESS is primarily envisioned as an intervention on acoustic
features before the vocoding step: the relevant features



Figure 3. The overall architecture for METTSpeech model (a) with Direct text Input and (b) Integrated eGeMAPS predictor in Variance Adaptor. LR in
subfigure (b) denotes the length regulator

would be mapped to their emotional equivalents before
being used to synthesize speech. In particular, mappings
between both prosodic and spectral features were learned
using data Deep neural network-based synthesis employ
neural networks as the model of choice to substitute one or
more components of a traditional emotional speech synthesis
pipeline. Initially, sequential models ( Recurrent Neural
Networks (RNNs) or long short-term memory networks
(LSTMs)) were used for acoustic modeling, such as the early
DeepVoice systems [8]. WaveNet was the first DL model to
directly generate the waveform from linguistic features [9].
In Tacotron [1] which is a auto-regressive model,WaveNet
[10] is included as an attempt to directly synthesize phoneme
sequences to speech inference. Although, in case of high-
load environment solutions such as large social networks
where inference speed is essential, FastSpeech 2 [11] a non-
autoregressive TTS model, shows higher accuracy in terms
of Mean Opinion Score (MOS).

2.2. FastSpeech 2 model

FastSpeech2 functions as a non-autoregressive acoustic
model, designed for swift and high-fidelity speech synthesis.
The model processes a series of input tokens to produce
mel spectrograms. These spectrograms are subsequently
converted into waveforms using a vocoder. The primary ele-
ments of FastSpeech2 include its encoder, variance adapter,
and decoder. Each component of the model serves a specific
purpose:

• The Encoder processes textual information, extract-
ing features that determine the content of speech.

• The Variance Adaptor then enriches this input se-
quence with acoustic properties and timing details.

• The Decoder synthesizes all this information to pro-
duce the mel spectrogram features.

Both the encoder and decoder consist of a feed-forward
transformer block, incorporating a series of multi-head self-
attention layers and 1D-convolution.

Existing TTS models inlcuding FastSpeech2 are limited
while providing enhanced quality of speech when it comes
to multi-speaker speech generation with emotional expres-
sion. Along with this, these models are not user-friendly
considering the phoneme input is directly provided. In our
proposed METTSpeech system we intend to overcome these
limitations of previous models.

3. METTSpeech Model Formulation

In this paper, we propose the METTSpeech model,
which incorporates and adapts the FastSpeech 2 model with
significant modifications such as increased feature predic-
tors(eGeMAPS) in the variance adopter and direct text to
speech conversion availability for efficient usability. Our
proposed METTS system is an end-to-end multi-speaker
text-to-speech system which provides a novel platform for
users to convert desired text into natural sounding user-
specific voice.

The base model for METTSpeech is FastSpeech2 [11].
We make several modifications to FastSpeech2 to achieve
our proposed system. In this section, first we discuss about
the FastSpeech2 model, then we explain the significant
changes made to achieve METTSpeech.

The MettSpeech architecture incorporates an encoder,
variance adaptor and decoder which are described as fol-
lows. An encoder converts a token embedding sequence



into the token’s hidden representation of h ∈ Rn×hid and
output the pitch, energy, and durations (p, e, d) for each
token. Then, the length regulators “upsample” h ∈ Rn×hid,
accumulated with p, e ∈ Rn according to d ∈ Rn. Token
duration is measured by the number of mel spectrogram
frames, which leads to length regulator output h ∈ Rm×hid,
where m =

∑n
i=0 di. Later, the upsampled tokens are passed

through a decoder, and the hidden dimension is reflected
in mel channels using a linear layer. The final output is a
predicted mel spectrogram h ∈ Rm×c. The model learns to
generate a mel spectrogram from the input text sequence
using reconstruction loss:
Lrec = ||y − ŷ||+ ||d− d̂||2 + ||e− ê||2 + ||p− p̂||2 , where
ŷ, d̂, ê, p̂ , are predicted mel spectrogram, duration, pitch,
and energy [12].

3.1. Emotion Conditioning

Embedding lookup tables are employed in the develop-
ment of METTSpeech from FastSpeech2 to facilitate initial
speaker and emotion conditioning. By merging speaker and
emotion embeddings, we create a conditioning vector c.
This method of concatenation enables the generation of
50 distinct embeddings from an original set of 15 in the
lookup table, enhancing the conditioning process. Our initial
alterations involve incorporating the conditioning vector c
into the encoder’s output, which is then supplied to the
variance adaptor.

3.2. eGeMAPS Predictor

The variance adaptor is extended by integrating addi-
tional parameters. The architecture of METTSpeech model
is referred from FastSpeech2. The derived modifications
including the variance adoptor integrated with eGeMAPS
predictor can be observed in Fig. 3. In speech synthesis
with METTSpeech, we incorporate an eGeMAPS predictor
(EMP) into the variance adaptor to ascertain k parameters
from the Extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS). Although eGeMAPS includes 88 low-
level descriptors commonly utilized in diverse voice analy-
sis tasks, we focus on those most pertinent for conveying
emotion. By analyzing all eGeMAPS features within the
English subset of the ESD dataset, and utilizing a CatBoost
classifier for emotion classification, we strive to isolate
the most influential features for emotional expression. This
selection method is aimed at enriching the speech output
with low-level descriptors that significantly correlate with
the emotional states we aim to synthesize.

3.3. Conditional Layer Normalization

Due to the inherent difficulty in accurately estimating
speaker characteristics for new, unseen speakers, using im-
precise speaker representations as input to the decoder can
result in a disparity between the training of the source model
and zero-shot synthesis. Consequently, we investigate an

enhanced conditioning method that utilizes speaker repre-
sentation as model input, aiming to boost the TTS model’s
generalizability in zero-shot situations.

Additionally, we consider the application of meta-
learning techniques to fine-tune our model on a small subset
of data from unseen speakers, potentially improving its abil-
ity to generalize from limited information. This adaptation,
aimed at refining the model’s performance on novel speaker
voices, is an added component to our methodology to further
mitigate the issues of speaker variability in zero-shot TTS
tasks.

The scale and bias vectors in layer normalization are
determined by leveraging a small conditional network to
process the extracted speaker representation. Specifically,
a linear layer W γ for scale and W β for bias are em-
ployed, referring to conditional layer normalization (CLN)
in AdaSpeech4 [13]. These layers, utilizing the extracted
speaker representation E as input, output adaptive scale and
bias vectors as follows:

γ = E ×W γ , β = E ×W β . (1)

For the purpose of emotional speech synthesis, we re-
place the standard layer normalization in both the self-
attention and feed-forward networks with this conditional
layer normalization.

To enhance the fidelity of the synthesized speech, we
adopt an adversarial training approach similar to that em-
ployed by GANspeech [14], [15], integrating it into the
METTS framework. The JCU (joint conditional and uncon-
ditional loss [16]) discriminator’s conditional architecture,
is well-aligned with the requirements of our system that
accommodates multiple speakers and a range of emotions.
Throughout a unified training phase, both the discriminator
and METTS are concurrently trained. The conditioning dis-
criminator utilizes a composite embedding c, which merges
both speaker and emotion embeddings, mirroring the con-
ditioning strategy of the generator.

4. Evaluation

4.1. Data Preprocessing

To train the METTSpeech model, we focus on providing
a lightweight solution for speech synthesis with multiple
speakers and a fixed set of emotions, so we opt for the
Emotional Speech Dataset (ESD) [17].

The dataset boasts a diverse array of speakers and en-
compasses a broad lexical scope. Comprising 350 spoken
expressions by 10 different speakers and encapsulating five
distinct emotional states — Neutral, Angry, Happy, Sad, and
Surprised — the collection amasses a total of 1750 spoken
expressions per speaker. The dataset features a comprehen-
sive word count of 11,015. The vocabulary of the utterances
is varied, as is the tonal expression within the sentences.
Accompanying each audio file is a textual transcript and a
single label denoting the expressed emotion.

The dataset is split into training, testing and validation
subsets, whereas the validation and test subsets consists of



20 and 30 utterances, each consisting of five emotions and
ten speakers (totalling 1000 and 1500 utterances for testing
and validation respectively).

For Feature extraction, we consider utterance, text tran-
script, phonemes, mel-spectrograms, durations, pitch and
other acoustic features such as eGeMAPS. The Grapheme-
to-phoneme (G2P) model from the Montreal-forced-aligner
(MFA) [18] toolkit is used to extract phonemes, dura-
tion of extracted phonemes, punctuation and silence tokens
from text annotations. To extract pitch from ground truth
waveforms, the pyworld library was employed. The en-
ergy feature was extracted by normalizing spectrograms by
frequency dimension and finally eGeMAPS features were
extracted using the openSMILE toolkit [19].

4.2. Model Configuration and Performance

In this paper, we propose the METTSpeech model ar-
chitecture, while employing analogous hyperparameters, we
have customized specific parameters: the phoneme embed-
ding, along with the encoder and decoder hidden dimen-
sions, are adjusted to 512, and the Conv1D filter sizes
for both encoder and decoder are also set to 512. The
encoder and decoder are constructed with six layers each.
The embeddings for speaker and emotion have a hidden
dimension of 256. For the eGeMAPS predictor, which is
integrated into the Variance Adaptor block, we maintain
consistency with the architecture of existing predictors: it
comprises two 1D convolution layers with a kernel size
of 3 and stride of 1, accompanied by a ReLU activation
function and a dropout rate of 0.5. The iSTFTNet vocoder,
trained on the English portion of the ESD database. Mel-
spectrograms were derived from waveforms using a filter
length of 48 milliseconds, a hop length of 12 milliseconds,
and encompassing 80 mel frequency channels inspired from
EmoSpeech [12].

The training was done on a Nvidia GeForce RTX 3090
graphics card, accommodating a collective batch size of
256 for a total of 25,000 training steps. For optimization
and scheduling the protocol was aligned with FastSpeech2.
Training sessions were orchestrated applying the Adam op-
timization algorithm with a learning rate of 0.0001.

We observe the Mean Squared Error(MSE) loss [20]
value for extracted features while training. In Fig. 4, The
MSE loss trend is depicted for Mel-spectrograms, pitch,
energy, eGeMaps and duration features for 25,000 train-
ing steps. We can observe a decreasing trend for all
features. At the final step,the average MSE loss values
are: Mel-spectrograms(0.58), pitch (0.018), energy(0.022),
eGeMaps(0.065) and duration(0.010).

We evaluated the performance by calculating Mean
Opinion Score (MOS) with the NISQA-TTS model [21]
and predicted a MOS score on a 5-point scale (higher
score denotes superior perceived quality) instead of the
traditional human-based Mean Opinion Score evaluation,
which requires extensive human resources. The NISQA-TTS
model provides efficiency and consistency in automatically
assessing the naturalness in emotion transmission for our

Figure 4. MSE loss trends for synthesized speech feature prediction over
training steps

proposed system. We compared the performance of the
proposed METTSpeech model with the general FastSpeech2
model. We compare the MOS value of original utterances
(ground truth) and utterances generated by these two AI
models.The result can be observed in Table 1.

TABLE 1. THE COMPARISON OF MOS VALUE CALCULATED WITH
NISQA.

Model MOS (NISQA)
Multi-speaker Individual Speaker

FastSpeech2 3.12±0.6 3.76±0.78
METTSpeech (Proposed) 3.72±0.78 4.09±0.65

Our model achieved a 3.72±0.78 MOS score for multi-
speaker (all different speakers in the dataset) evaluation
and a 4.09 ± 0.65 for individual speaker voices, whereas
FastSpeech2 showed 3.12±0.6 and 3.76±0.78 . The multi-
speaker MOS score reflects the quality and naturalness of
the synthesized voices when considering the variation and
diversity across all speakers as a whole which may lead to
lower a MOS value than in the individual speaker scope.
To understand and improve the quality of the multi-speaker
score, different speaker styles (accents etc.) of all speakers
considering slightest differences needs to be considered for
feature extraction.

5. METTS Web Server Integration

To create an end-to-end system, the METTS web server
was created. We divided the request-response flow into three
main modules, namely: the user interface, the METTS web
server and the dockerized service as shown in Fig. 2. We
deploy the METTS docker container which consists of a
preprocessing method for text to phoneme conversion and
speech generation with an emotion conditioning module
using the METTSpeech Model. Users can generate desired
speech by providing 3 input parameters, including - typing
the text input, selecting the speaker voice (extracted from
set of ESD dataset speakers) and emotion choice out of 5
emotions - neutral, angry, happy, sad and surprised. The
input parameters are shared with the service handler which
proceeds to get the selected speaker related information
from the database and transfers it to docker service. The



response from the METTS service after the speech synthe-
sizing process is received by the web server which transfers
the generated output to the user interface. We allow the
synthesized audio to be downloaded by the user for ease of
usability. Since we focus on providing a lightweight model,
the inference time is observed as average 3 seconds per
sentence.

6. Conclusion and Future Work

In this paper, AI Voice Synthesis integrating Emotional
Expression and a Multi-Speaker Voice Generation system
has been proposed. The system envelops the METTSpeech
model based on FastSpeech2. Evaluation is conducted by
calculating the MOS value performance. The proposed sys-
tem shows enhanced naturalness in the quality of inference.
The implemented system successfully synthesizes text into
emotion embedded speech, while the naturalness can be im-
proved further by training on larger datasets with extensive
speaker styles and vocabulary. In the future, we intend to
explore range of English accents, speaker styles and evaluate
the system with multiple language datasets.
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