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Abstract—Climate change, including rising temperatures, 

droughts, and floods, has recently become a global concern. In 

the agricultural sector, it is anticipated that climate change will 

significantly affect the characteristics and productivity of crops. 

In particular, medicinal plants are used as raw materials in 

various industrial areas such as health functional foods, natural 

medicines, and living materials. However, their productivity is 

decreasing due to climate change. In this paper, we propose a 

model that can predict the physiological active ingredient index 

of Cnidium Officinale Makino, a representative medicinal crop 

vulnerable to climate change, based on different climate change 

scenarios. First, to address the issue of imbalanced data 

collection, we augmented the collected data using the TVAE 

algorithm, a structured data generation model. The quality of 

the augmented data was assessed using column shape and 

column pair trends, resulting in an average overall quality of 

89%. Secondly, in order to predict the total contents of phenol 

and flavonoid, which are the main physiological active 

ingredients of Cnidium Officinale, the accuracy of the 

predictions was evaluated using five models: RF, SVR, 

XGBoost, AdaBoost, and LightBGM. After evaluating model 

performance, the XGBoost model demonstrated the highest 

accuracy in predicting the physiological active ingredients of C. 

officinale. 
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I. INTRODUCTION 

Smart farm means creating new value in various 
agricultural fields, encompassing not only agricultural 
production but also distribution and consumption, through the 
convergence of agriculture and ICT [1, 2]. The primary goal 
of a smart farm is to enhance productivity by analyzing data 
collected from the smart farm and delivering the results. 
Various environmental factors, such as temperature, humidity, 
light intensity, and moisture, are known to be important in 
determining the growth conditions of crops. Climate change 
is significantly altering these environmental factors, leading to 
missed crop cultivation periods and creating uncertainty in 
cultivation areas, which has a significant impact on crop 
production [3]. To accurately understand the effects of climate 
change and reduce damage caused by it, various studies based 
on machine learning techniques are being conducted to 
determine key factors affecting crop production and to explore 
ways to improve productivity. 

However, research on high-value medicinal plants has not 
been actively pursued, except for a few plants like ginseng or 
mushrooms. It is challenging to gather a substantial amount of 
data for machine learning due to limitations on the number of 
production farms and cultivation methods. To address the 
issue, we collects environmental and physiological response 
data for Cnidium Officinale Makino, a representative 
medicinal plant vulnerable to climate change. Additionally, a 
data augmentation technique is introduced to alleviate the 
imbalance in the collected data. Finally, using the augmented 
data, we make predictions for the physiological active 
ingredients index of Cnidium Officinale based on climate 
change scenarios. 

The content of the paper is as follows. In Session 2, we 
explain the factors contributing to climate change and the 
experimental environment. In Session 3, we describe data 
augmentation technique for processing the collected data and 
using prediction models. We assess the performance of the 
prediction model for the physiological active ingredients of C. 
Officinale in Session 4 and conclude the paper in Session 5. 

II. CLIMATE CHANGE SCENARIOS AND CULTIVATION 

ENVIRONMENT FOR CNIDIUM OFFICINALE 

Climate change scenarios include SRES(Special Report 
on Emission Scenarios), RCP(Representative Concentration 
Pathways), and SSP(Shared Socioeconomic Pathways). In 
this paper, we utilize the SSP scenario, specifically SSP1-2.6, 
SSP3-7.0, and SSP5-8.5 [4]. 

To manage the environmental impact of climate change, 
the environmental conditions, such as CO2 concentration, 
temperature, and humidity, inside the chamber are precisely 
controlled. The SPDS (Soil Plant Daylit System) chambers, 
made of plexiglass to allow natural light, were used, as shown 
in Fig. 1. 

 

Fig. 1. SPDS for Cnidium Officinale  
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III. DATA COLLECTION AND AUGMENTATION 

A. Data Collection 

We collected environmental and physiological response 
data for Cnidium Officinale under different climate change 
scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) using the 
SPDS chamber at the Climate Change Education Center of 
Korea National University of Agriculture and Fisheries from 
May to September 2023. The data collection environment is 
depicted in Table 1. 

Data collected for climate change scenarios includes 
environmental information, physiological response index, and 
physiological active ingredients index. First, environmental 
data (atmospheric CO2 concentration, temperature, relative 
humidity, atmospheric vapor pressure difference (VPD), and 
light intensity (PPDF)) was collected every hour. Second, the 
physiological response index of C. Officinale includes 
photosynthetic pigments such as chlorophyll a, chlorophyll b, 
total chlorophyll, and carotenoid content, as well as ratios like 
chlorophyll a/b and chlorophyll/carotenoid. It also 
encompasses energy transfer flow like photosynthetic reaction 
center deactivation index, heat release index, energy capture 
index, and energy delivery index. Additionally, it involves 
photosynthetic vitality measures such as energy conservation 
index, photosynthetic driving force, photosynthetic functional 
structure, and quantum yield. We collect the physiological 
response index once a month and measure it five times 
repeatedly. The physiological active ingredients index of C. 
Officinale finally includes the total extraction yield of phenol 
and flavonoid from the leaf and root (%), the total phenol 
content from each part of the leaf and root (mg GAE/g weight 
of C. officinale), and the total flavonoid content from each part 
of the leaf and root (mg QE/g weight of C. officinale). We 
collect the index of physiologically active ingredients once a 
month and measure it three times repeatedly. 

The total number of data collected for each scenario 
includes 3,237 pieces of environmental information, 75 pieces 
of physiological response index data, and 45 pieces of 
physiological active ingredients index data. 

 

 

TABLE I.  DATA COLLECTION ENVIRONMENT 

 CO2 

concentration 
Temperature Humidity 

SSP1-2.6 445 ppm +1.8℃ 60% 

SSP3-7.0 872 ppm +3.6℃ 60% 

SSP5-8.5 1,142 ppm +4.4℃ 60% 

B. Data Augmentation 

TVAE (Tabular Variational Autoencoder) is a model that 
applies VAE (Variational Autoencoder) to structured data. 
TVAE applies mode-specific normalization to address non-
Gaussian and multimodal distribution problems and utilizes 
data generation through a conditional generator to enhance the 
quality of augmented data [5-7]. In this paper, the collected 
data is enhanced using a TVAE-based oversampling 
technique, which can address data imbalance between 
environmental information, physiological response index, and 
physiological active ingredient index. 

We assessed the quality of augmented data based on 
column shape, column pair trends, and overall quality. 
Column shape represents the similarity in distribution 
between the original data column and the corresponding 
augmented data column, and was measured using the 
Kolmogorov-Smirnov (K-S) test. To calculate the K-S 
statistic, the numerical distribution was transformed into a 
cumulative distribution function (CDF), and the maximum 
difference between the two CDFs was measured [8-9]. 
Column pair trends represents the correlation coefficient 
between real data (R) and augmented data (S) for a pair of 
columns A and B, and was calculated using (1). 

 score � 1 � 	
�,
���,
	
� � 100% (1) 

Overall quality is calculated by averaging the values of the 
column shape and column pair trends. Table 2 presents the 
quality measurement results of the TVAE-based augmented 
data. 

TABLE II.  QUALLITY OF THE AUGMENTED DATA 

 Column  

shape 

Column  

pair trends 

Overall 

quality 

SSP1-2.6 85.22% 94.37% 89.79% 

SSP3-7.0 85.55% 93.34% 89.45% 

SSP5-8.5 86.87% 93.66% 90.27% 

 

 

Fig. 2. Column shape of total chlorophyll (TChl) at SSP3-8.5  

 

Fig. 3. Column shape of SFIabs at SSP3-8.5 



 

Fig. 4. Column shape of Eto/RC at SSP3-8.5 

IV. PERFORMANCE EVALUATION OF PREDICTION MODELS 

FOR VERIFYING AUGMENTED DATA 

To validate the augmented data, we make experiments to 
predict the contents of physiological active ingredients of 
Cnidium Officinale according to climate change. First, we 
augment both physiological response index data and 
physiologically active ingredients data, and then map them 
with environmental information data. 80% of the preprocessed 
data was used for training, 20% for testing, and k-fold cross-
validation (k=5) was performed. To predict the content of 
physiological active ingredients in C. officinale, we used five 
methods: RF (Random Forest) [10], SVR (Support Vector 
Regression) [11], XGBoost [12], AdaBoost [13], and 
LightGBM [14]. For the five models, we measure Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), 
and Root Mean Squared Log Error (RMSLE), which are 
calculated by (2), (3), and (4), respectively. 

 MAE � �
�∑ |�� � ���|����  (2) 

 RMSE � "∑ #$%�$&'()
�

����  (3) 

 RMSLE � "�
�∑ #log#�� - 1( � log#��� - 1((�����  (4) 

For each prediction model, we determine the optimal 
hyperparameters using the grid-based method [15-18]. The 
Random Forest (RF) parameters were set as follows: 
n_estimators=2000, criterion='squared_error', 
max_features=12, max_depth=10, min_samples_split=8, and 
min_samples_leaf=8. The SVR parameters were set to 
kernel='rbf', C=64, and gamma=8. The XGBoost parameters 
were configured as follows: learning_rate=0.1, 
n_estimators=890, max_depth=13, min_child_weight=5, 
gamma=0, subsample=0.9, colsample_bytree=0.8, 
objective='reg:squarederror', reg_alpha=10, and 
reg_lambda=0.1. The AdaBoost parameters were set to 
n_estimators=50, learning_rate=0.1, and loss='linear'. The 
parameters of LightBGM were set as follows: 
n_estimators=1000, learning_rate=0.05, max_depth=-1, 
num_leaves=90, and colsample_bytree=0.5. 

To assess all the models, we predict the total phenol 
contents in leaf and root, and the total flavonoid contents in 
leaf and root, based on the climate change scenarios SSP1-2.6, 
SSP3-7.0, and SSP5-8.5. Next, we calculate the average 
prediction error for each model. Fig. 5. shows the result of the 
average prediction error. 

 

Fig. 5. The average prediction error for five prediction models 

XGBoost exhibits excellent performance in predicting the 
physiological active ingredients of C. Officinale. XGBoost is 
a boosting-based ensemble machine learning model that 
applies regularization to prevent overfitting. Due to 
regularization, XGBoost can achieve high prediction 
accuracy. 

V. CONCLUSION 

In this paper, we proposed a model that can predict the 
physiological active ingredient index of Cnidium Officinale, a 
representative medicinal crop vulnerable to climate change, 
based on different climate change scenarios. To predict the 
phenol and flavonoid components, which are physiological 
active components of C. officinale, environmental 
information was collected using an SPDS chamber. 
Physiological response data was collected monthly and 
measured five times, while the physiological active 
ingredients were collected monthly and measured three times. 
To address the issue of data imbalance in collecting 
environmental information, physiological reactions, and 
physiologically active ingredient data, we augmented the data 
using the TVAE algorithm. The overall quality of the 
augmented data is 89%, achieved by averaging column shape 
and column pair trends. With the augmented data and five 
prediction models (RF, SVR, XGBoost, AdaBoost, and 
LightGBM), we predicted the total phenol and total flavonoid 
contents in leaf and root. After evaluating prediction errors, 
XGBoost demonstrated the best performance in predicting the 
physiological components of C. officinale. 

In the future, we plan to design and implement a prediction 
model that integrates various existing models. So we can 
derive key factors and correlations between features by 
expanding the collected data. 
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