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Abstract—This paper introduces a novel Bidirectional Long-
Short-Term-Memory (BiLSTM) based Artificial Neural 
Network (ANN) model for the behavioral modeling of the 
nonlinear distortions observed in dual-band radiofrequency 
power amplification systems. Addressing the demand for 
energy-efficient and green wireless infrastructures in the era of 
multi-band transmissions, the proposed Augmented BiLSTM 
uses selected features of the input signals in each band to 
concurrently predict the output waveform in each band. 
Experimental benchmarking against the established 2D-
Memory Polynomial (2D-MP) model, conducted with a ZHL-
5W-2G_S+ power amplifier prototype driven by concurrent 
dual-band 5G signals, reveals that the proposed model is able to 
achieve comparable performance. In addition to its accuracy, 
the main advantage of the proposed neural network based 
model lies in its ability to simultaneously model the amplifier’s 
behavior in both bands with a single trainable structure. This 
contrasts with conventional analytically defined models, which 
require a dedicated structure per signal transmission band.  

Keywords— 5G, artificial neural networks, behavioral 
modeling, distortions, memory effects, multi-band, power 
amplifiers. 

I. INTRODUCTION 
Power amplifiers (PAs) are one of the most critical 

electronic components in today’s wireless communication 
infrastructure. A PA amplifies the radiofrequency (RF) signal, 
but because of its nonlinear nature of operation, it creates 
unwanted distortions. These distortions present themselves as 
either in-band distortions or out-of-band distortions. The in-
band distortions contribute to increasing the error vector 
magnitude (EVM) of the RF signals, while the out-of-band 
distortions create unfilterable spectral regrowth that can 
interfere with other transmissions that share the licensed 
electromagnetic spectrum. Nevertheless, a PA can be operated 
in an almost linear manner, but this greatly decreases its 
efficiency. Hence, there is a trade-off between building an 
efficient RF transmission system and meeting the spectral 
emission specification of relevant communication standards 
which inevitably requires operating the power amplifier in its 
power-efficient and nonlinear mode and compensating the 

resulting distortions through the use of linearization 
techniques [1]-[3]. 

Modern communication systems employ dual-band and 
multi-band power amplifiers in order to accommodate multi-
band transmissions to meet the rising demand for higher 
bandwidths and lower latencies. In such systems, the 
distortions exhibited by nonlinear PAs become more critical 
since they include the distortions due to the presence of each 
band alone, as well as the inter-band distortions due to the 
interaction of the signals being transmitted concurrently 
within the different frequency bands [4]. 

Digital predistortion is the most widely adopted technique 
for the compensation of nonlinear distortions in multi-band 
power amplifiers. Behavioral modeling of power amplifiers 
distortions goes alongside digital predistortion since, in their 
essence, they both require the modeling of the PA’s 
nonlinearity. Several models and predistortion functions have 
been proposed for the case of dual-band nonlinear power 
amplifiers. These can be categorized as either analytically 
defined models [5]-[9], box-based models [10], or neural 
networks based models [11][12]. Analytically defined models 
of dual-band PAs started with the 2D-MP model [5]. Later, 
several attempts were made to reduce the complexity of this 
model [6][7], apply pruning techniques [8], or develop time-
misalignment tolerant version [9]. Some of the artificial neural 
networks that have been utilized to successfully model dual-
band concurrent systems include modified real-valued time-
delay neural networks [11], and augmented convolutional 
neural networks [12]. 

Among the various neural networks structures used for the 
behavioral modeling and predistortion of nonlinear power 
amplifiers, Bidirectional Long-Short-Term-Memory 
(BiLSTM) networks represent a viable approach. In fact, it has 
been recently reported that for the case of single-band power 
amplifiers, BiLSTM networks can lead to resilient 
predistortion functions that can maintain acceptable 
linearization capabilities over a wide range of operating 
conditions [13]. In this work, the use of BiLSTM networks for 
the behavioral modeling of dual-band power amplifiers is 
investigated. The conventional BiLSTM structure is modified 



to take as input the baseband in-phase and quadrature 
components of the signals in each band. It is also augmented 
to take into account additional useful features of the input 
signals in both bands. The model is configured to provide a 
dual-band output including the baseband signals in both 
bands. The proposed model is validated using experimental 
data. The reported results clearly demonstrate its potential. In 
section II, the proposed augmented BiLSTM is presented 
along with the 2D-MP model which will be used as a 
benchmark. Section III is devoted to the description of the 
experimental setup and the validation of the proposed model. 
Finally, the conclusions are summarized in Section IV. 

II. AUGMENTED DUAL-BAND BILSTM MODEL 
While feedforward ANNs can effectively perform digital 

predistortion functions and yield satisfactory outcomes, these 
straightforward neural networks lack the capability to grasp 
the intrinsic memory effects associated with PAs. Therefore, 
employing specialized neural networks explicitly crafted to 
exploit the temporal dependencies within an input vector 
proves significantly more appropriate. One exemplary 
instance is the LSTM network. LSTMs can incorporate 
temporal information that is embedded in an input vector such 
that all of the relevant information embedded within are 
extracted. Hence, LSTMs provide a way of extracting useful 
memory information exhibited by the dynamic nonlinear 
behavior of power amplifiers as presented in [14]. BiLSTMs 
are an extension of LSTMs that process the input vector both 
in the forward and backward directions as suggested in Figure 
1, utilizing distinct forward and backward LSTM layers. This 
procedure is repeated multiple times depending on the 
specified number of LSTM cells utilized. 

 
Fig. 1. Typical BiLSTM structure 

This bidirectional approach enhances robustness and 
performance compared to standard LSTMs, as it facilitates the 
extraction of more temporal data from the input vector at the 
expense of an increased number of coefficients. Nevertheless, 
BiLSTMs have seen great success in creating resilient digital 
predistortion models as presented in [13], and being suitable 
for use with relaxed feedback sampling rates [15]. Hence, it is 
important to assess the potential of BiLSTM structures for 
multi-band nonlinear power amplification systems.  

In this work, an Augmented BiLSTM model for 
behavioral modelling of dual-band nonlinear power amplifiers 
is proposed. As suggested by some of the previous works [12], 
data preprocessing greatly helps in easing the requirements of 
ANNs as by doing so, many of the relevant nonlinear 
information is pre-extracted from the input data such that the 
neural networks architecture of choice is mainly focusing on 
extracting relationships between the model’s relevant input 
features and its output. Hence, rather than feeding the 
BiLSTM model with only the in-phase and quadrature 

components of the baseband signals in each band, a feature 
vector is constructed to include components that are related to 
the basis functions of analytically defined models. As a result, 
the input signal of a given band is transformed into the 
following matrix: 
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where ( )iX n  is the input features matrix of the input 
signal in band i , ( )ix n  is the baseband input waveform in 
band i , ( )iI n  and ( )iQ n  are the in-phase and quadrature 
components of the input signal ( )ix n . M  and K  are the 
model’s memory depth and nonlinearity order, respectively. 

For the dual-band operation, the proposed augmented 
BiLSTM model is fed by two input features matrices ( )1X n  
and ( )2X n  which are concatenated. The output layer of the 
BiLSTM model will provide the estimated in-phase and 
quadrature components of the output complex baseband 
waveforms in each of the transmission bands 

( ) ( ) ( ) ( )( ),1 ,1 ,2 ,2,  ,  ,  and out out out outI n Q n I n Q n . The proposed 
model can be generalized to the case of multi-band 
transmission systems with N  bands by concatenating the N  
input features matrices ( )1X n  through ( )NX n . The model 
will simultaneously output the in-phase and quadrature 
components in all N  bands as depicted in Figure 2. 

 
Fig. 2. Simplified block-diagram of the proposed augmented BiLSTM 
multi-band model 

The baseline model for dual-band nonlinear power 
amplifiers is the 2D-MP which is an extension of the well-
established single-band memory polynomial dedicated to the 
case of dual band systems. The 2D-MP model was used in this 
work as the benchmark model to assess the performance of the 
proposed BiLSTM model. Let’s consider the case of a dual-
band amplifier driven by two RF signals with ( )1x n  and 

( )2x n  the baseband waveforms corresponding to the signals 
in band 1 and band 2, respectively. The 2D-MP model 
structure can be used to predict the amplifier’s baseband 
complex output waveforms through 
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where ( )iy n  is the estimated baseband output waveform 
in band i , ( )ix n  is the baseband input waveform in band i , 
and ( )jx n  is the baseband input waveform in the other band 

( )j . klm
ia  are the coefficients of the 2D-MP model used to 

predict the output in band i . M  and K  represent the 
model’s memory depth and nonlinearity order, respectively.  

The 2D-MP as well as its low complexity and pruned 
variants [5]-[9], use the baseband complex waveforms in each 
band to separately predict the corresponding output in each 
band. This means that for dual-band applications, two 2D-MP 
models are needed to predict the dual-band output waveform 
since each 2D-MP will predict the signal in one of the bands. 
Hence, the extension to the case of multi-band with N -bands 
would require the identification of N  different N −
dimensional memory polynomial models. 

III. EXPERIMENTAL VALIDATION 

A. Device under Test and Data Acquisition 
The device under test (DUT) used in these experiments is 

the ZHL-5W-2G_S+ high power amplifier prototype by 
Minicircuits. The DUT operates in the 0.8GHz to 2GHz 
frequency range. It was fed by two 5G new radio (NR) signals 
centered at 1.0GHz and 1.6GHz, respectively. The lower band 
signal, centered at 1.0GHz, has a 10.9dB peak to average 
power ratio (PAPR), and a bandwidth of 100MHz. The higher 
band signal, centered at 1.6GHz, has a PAPR of 10.7dB, and 

a 100MHz bandwidth. The signals were generated using the 
Zynq Ultrascale+ RFSoC ZCU216 evaluation board. The 
signals at the output of the power amplifier were acquired 
individually at a sampling rate of 491.52Msps each using the 
FSW signal and spectrum analyzer from Rhode and Schwarz. 
The block diagram of the experimental setup is illustrated in 
Figure 3. 

 
Fig. 3. Block diagram of the experimental setup 

The acquired baseband output waveforms were first 
processed to compensate for time-delay misalignment and 
then used to derive the lower-band and upper-band AM/AM 
and AM/PM characteristics of the device under test. These are 
reported in Figure 4 and Figure 5 for the lower, and upper 
frequency bands, respectively. As it can be seen through the 
nonlinear shape of these characteristics and their substantial 
dispersion, the device under test exhibits a mild nonlinearity 
along with strong memory effects.

  
(a)   (b) 

Fig. 4. AM/AM and AM/PM characteristics of the DUT at the lower frequency band. (a) AM/AM characteristic, (b) AM/PM charactersitic 

  
(a)   (b) 

Fig. 5. AM/AM and AM/PM characteristics of the DUT at the upper frequency band. (a) AM/AM characteristic, (b) AM/PM charactersitic 



B. Augmented BiLSTM Identification and Performance 
Assessment 
The device under test was modeled using the proposed 

augmented BiLSTM dual-band neural network and the 
benchmark 2D-MP model. First, the memory depth and 
nonlinearity order of the DUT were determined using a simple 
exhaustive search through which the parameters of the 2D-MP 
model were swept. It was found that a 2D-MP with a memory 
depth of 5 and nonlinearity order of 4 results in the best trade-
off between modelling performance and computational 
complexity.  

The proposed Augmented BiLSTM model was set up with 
the same memory depth and nonlinearity order as the 2D-MP 
(that is 5M =  and 4N = ). The model was trained utilizing 
the ADAM optimizer and the mean squared error as a cost 
function for 60 epochs. The tanh  activation function was 
utilized for the single hidden layer, which is composed of 64 
forward and reverse LSTM cells. A linear activation function 
was used for the output layer. Furthermore, the Augmented 
BiLSTM model was trained using only 20% of the sampled 
signals, which is comparable to other neural network based 
models [12]. However, the training subset can be reduced to 
as low as 8% while maintaining the modelling performance 
with an NMSE degradation of less than 1.5 dB. 

First, the normalized mean squared error (NMSE) was 
computed for the 2D-MP model and the proposed BiLSTM 
model. The NMSE is given by: 
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where ,i dBNMSE  corresponds to the NMSE in band i . L  
represents the number of samples in the iy  and iy  
waveforms. These two waveforms are the estimated and 
measured baseband waveforms in band i , respectively. 

The NMSE results obtained in each band for each model 
are summarized in Table 1. This table shows that the proposed 
model leads to slightly better accuracy than the 2D-MP model 
in each of the two bands. To value the significance of this 
result, it is important to note here that typically neural 
networks based models lead to slightly lower performance 
than analytically defined models while allowing for better 
generalization capabilities. In this work, comparable 
performances between the 2D-MP and the Augmented 
BiLSTM were achieved by the proper selection of the input 
features fed into the ANN model which included the same 
basis functions as those used in the 2D-MP. Moreover, this 
helped reduce the size of the BiLSTM structure needed to 
achieve such modeling accuracy.  

The two models were also compared by considering their 
frequency domain performance through the comparison of the 
spectrum of the DUT’s estimated output signal along with the 
measured one in the lower and upper frequency bands. These 
results, reported in Figure 6, corroborate the conclusions 
observed through the NMSE data. As it can be seen in this 
Figure, the spectra estimated by both models are quasi-
identical in both bands. 

Furthermore, the estimated AM/AM and AM/PM 
characteristics of the DUT in the lower and upper bands were 

derived from the 2D-MP model and the augmented BiLSTM 
model. These characteristics were compared to the measured 
ones. As shown in Figure 7, both models are able to accurately 
mimic the behavior of the DUT in each of the two bands. More 
specifically, while the proposed model concurrently estimates 
the output signal in both bands with the same structure, it is 
able to distinguish between the strong memory effects 
exhibited by the DUT in the upper frequency band and the 
weaker memory effects observed in the lower frequency band 
as it can be seen through the difference in the dispersion of the 
predicted AM/AM and AM/PM characteristics in both bands. 

Figure 8 depicts the magnitude and phase of the complex 
baseband output waveforms samples in the time domain for 
the lower and upper frequency bands signals. The results 
presented in this figure show the ability of the model to 
accurately predict the time domain samples in each frequency 
band, and are in line with the results of Figure 6 and Figure 7. 

TABLE I.  NORMALIZED MEAN SQUARED ERROR OF THE PROPOSED 
MODEL 

Frequency Band 
Model 

2D-MP 
(Benchmark) 

Augmented BiLSTM 
(Proposed)

Lower Band 37.2 dB−  37.6 dB−  

Upper Band 39.5 dB−  39.6 dB−  

 

 
(a) 

 
(b) 

Fig. 6. Frequency domain performance assessment of the proposed 
Augmented BiLSTM model (a) Estimated output spectrum for the lower 
frequency band, (b) Estimated output spectrum for the upper frequency band 



  
(a) (b) 

  
(c)   (d) 

Fig. 7. Measured and estimated AM/AM and AM/PM characteristics of the DUT (a) Lower-band AM/AM, (b) Lower-band AM/PM, (c) Upper-band AM/AM, 
(d) Upper-band AM/PM 

  
(a)   (b) 

  
(c)   (d) 

Fig. 8. Measured and estimated DUT baseband output waveforms (a) Lower-band magnitude, (b) Lower-band phase, (c) Upper-band magnitude, (d) Upper-
band phase



IV. CONCLUSION 
In this work, an augmented BiLSTM model was 

introduced for the behavioral modelling of multiband 
nonlinear power amplifiers systems. The model was tested 
under a concurrent dual-band transmission scenario for 5G 
applications, and its performance was compared to that of the 
2D-MP benchmark model. The reported results indicate that 
the proposed augmented BiLSTM model achieves acceptable 
results comparable to the 2D-MP whilst utilizing a single 
trainable model instead of two separate models (i.e. one model 
for each band separately). The main advantage of the proposed 
model is its scalability for multiband transmission systems as 
the proposed framework can be implemented for any number 
of concurrent transmission bands. This is not the case for 
memory polynomial-based models as when the number of 
concurrent bands is increased, the number and complexity of 
the models required to separately model each band increases. 
Furthermore, the main benefit of the proposed model lies in 
the capability of ANNs to mimic the inherent behavior of the 
system and be resilient to changes in the operating conditions. 
Future work will consider investigating the resilience 
capability of the proposed augmented BiLSTM multi-band 
model. 
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