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Abstract—Semi-supervised learning (SSL) techniques have
been rapidly developed and adopted in various vision tasks
because of their advantage of leveraging unlabeled data. However,
existing works have neglected the vulnerability of SSL because
most of the existing adversarial attacks are mainly discussed in
a supervised learning manner. In this paper, we study the effects
of adversarial examples on Semi-Supervised Object Detection
(SS-OD) which is the mainstream of SSL techniques. We build
our hypothesis that attacks on the supervised learning model are
also effective on SSL models. Since the state-of-the-art SS-OD
methods borrow the teacher-student network, we prepared two
pseudo-label based SS-OD networks to validate our hypothesis.
We attempt to attack the inference model with adversarial
examples crafted by using pretrained auxiliary model and found
that SS-OD networks are more vulnerable to adversarial attacks.
In addition, we found that selecting different loss components
of SS-OD networks to generate perturbations determines the
effect and performance of the attack such as misclassification
or mislocalization. Visual examples are provided for a clearer
understanding. To the best of our knowledge, this is the first
effort to investigate the vulnerability of SS-OD.

Index Terms—Adversarial attack, Semi-supervised object de-
tection

I. INTRODUCTION

Deep Neural Networks (DNNs) have emerged as state-of-
the-art solutions in a variety of vision-related tasks such as
classification [1]–[4] and object detection [5], [6]. However,
one of the major limiting factors in applying these models
in practice is the reliance on large labeled data sets that
are expensive to collect to train the models. Semi-supervised
learning (SSL) techniques have been proposed to handle this
issue. SSL model leverages only a small set of labeled data but
a large set of unlabeled data to improve performance [7], [8].
Because these techniques can leverage additional unlabeled
data, they have improved to the point where they exceed the
accuracy of fully supervised learning.
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Despite the development of SSL, the vulnerability of this
technique has not been studied a lot, unlike many attack
methods that have been studied with the development of
supervised learning. For the classification task, a poisoning
attack on unlabeled data has been attempted to show the
vulnerability of SSL [9], but the poisoning attack is not
realistic enough to be used in practice as it requires directly
injecting adversarial data in the training stage of the model.

In this paper, we perform the evaluation in Semi-Supervised
Object Detection (SS-OD), which is more difficult than a clas-
sification task, to examine the effect of adversarial examples
on SSL. In particular, we study evasion attacks in the white-
box manner, which are possible attacks in the inference stage
of the model. Evasion attacks can affect the inference phase
of the model hence they are more realistic than poison attack
methods that affect the training phase.

Existing state-of-the-art SS-OD methods [10], [11] ap-
ply self-training techniques, specifically, the pseudo-labeling
method [12], in which the teacher model generates pseudo-
labels and enforces the consistency between unlabeled data
with different augmentations. Considering that most of the
SS-OD models that record state-of-the-art borrow the com-
mon method of pseudo-labeling mentioned above, we first
focused on analyzing the structural weaknesses of this model.
The structure of the model that borrows the pseudo-labeling
method can be divided into a teacher model and a student
model. The teacher model trains with a small amount of
labeled data set and generates pseudo-labels for a large amount
of unlabeled data. The student model is then trained on a large
pseudo-labeled data set. In this process, if the teacher model
is trained in the wrong direction, it will cause performance
degradation in the student model trained with falsely generated
pseudo-labeled data [2]. This means that the performance
of the teacher model affects the performance of the student
model. Based on this evidence, the following hypothesis is
formulated.

Verified adversarial attack in the supervised learning model
is also working on SS-OD



Therefore, our analysis focuses on verifying the effect of SS-
OD on performance by attacking the inference model with
the adversarial example generated by the auxiliary model.
Here, the auxiliary model refers to a model that generates
pseudo-labels, and the inference model refers to a model used
in the final inference step. This is to prevent confusion in
understanding the explanation because the roles of the teacher
model and the student model may change depending on the
SS-OD model.

To give a brief overview of the stages that make up the
research, in the first step, we begin by implementing an
experiment to prove a hypothesis using off-the-shelf attack
methods [13]–[15]. We use adversarial examples generated by
attacking the pre-trained auxiliary model to attack the infer-
ence model. The adversarial examples generated by attacking
the pre-trained auxiliary model with different ratios of labeled
data sets are used to attack the inference model. In the second
experiment, we generate adversarial examples using not only
one classification loss, but each loss computed from Faster-
RCNN [16] which is the base model of both auxiliary and
inference models, and evaluate the impact of each loss and
their combination on the attack method. These are evaluated
in the same way as in the previous experiment: generating the
adversarial example from the auxiliary model and causing the
degradation of the performance of the inference model.

We make the following contributions:
• We proved that the attack method verified in the super-

vised learning model is also valid for SS-OD for the first
time. As a result, all SS-OD models [10], [11] used in
the experiment showed a performance decrease of at least
80% and a maximum of 95% due to the off-the-shelf
attack method [13]–[15].

• We evaluated the influence of adversarial examples gen-
erated by each loss of Faster-RCNN [16] and their
combination through various attack methods: when total-
loss was used, performance improved by at least 2% to
6% compared to other cases.

II. RELATED WORK

A. Adversarial Attacks

Generating adversarial attacks is widely studied in classifi-
cation. [17] first showed that deep neural network based clas-
sifiers are vulnerable to small perturbations to the images and
proposed a box-constrained L-BFGS method. [13] proposed
fast gradient sign method (FGSM) to generate adversarial ex-
amples efficiently by applying one step gradient information.
Due to the underfitting issue of FGSM, [18] extended FGSM
to an iterative version. [14] improved I-FGSM by starting
at a random point. These iterative attacks have a trade-off
in that they succeed the attack in high probability in white-
box settings, but low transferability leads to poor performance
in black-box settings. To resolve this problem, [15] added a
momentum term to improve the transferability of adversarial
examples and also stabilize the update direction.

Adversarial attacks are also studied in the object detection
field. [19] proposed black box attacks by using patches. The

attack performs well without the knowledge of the attacked
network’s architecture, however, the adversarial examples are
easily perceptible to humans. [20] proposed DAG that is able
to attack both semantic segmentation and object detection,
but it requires a large number of iterations which leads to
a massive computational overhead.

B. Semi-Supervised Object Detection

Semi-Supervised Object Detection (SS-OD) is proposed
to solve the overhead issue of acquiring and labeling data
for object detection. [21] applies consistency constraints to
improve object classification and localization. In recent works,
the pseudo-labeling strategy is widely used in that the model
generates pseudo-labels from unlabeled data and includes
them in the training data after a confidence check. [10] first
used a well-known teacher-student based framework in semi-
supervised object detection. Due to its lack of extra training for
teacher, STAC has limitations on final detection performance.
To deal with this problem, Two networks of Instant-teaching
[22] share both parameters. Unbiased teacher [11] uses EMA
[23] to train the teacher from the knowledge obtained by
the student. Active teacher [24] extends the teacher-student
network to an iterative version to maximize the effect of
limited label information. In this work, we focus on the
pseudo-label based semi-supervised object detection methods
of two-stage models.

III. METHOD

In order to evaluate whether the attack method verified in
supervised learning is effective in SS-OD, the attack part of
the target model must first be determined. The target models
[10], [11] in this paper use the pseudo-labeling method. In
pseudo-labeling, if the auxiliary model trains in the wrong
direction, an incorrect pseudo-label is generated, which causes
the performance of the inference model trained with these
pseudo-labeled data to deteriorate. In a similar vein, we
generate adversarial examples through off-the-self attacks on
auxiliary models and attack inference models with them. For
this purpose, it is necessary to set an auxiliary model and an
inference model in the target model. In this section, the target
model, STAC [10] and Unbiased Teacher’s [11] algorithm are
analyzed to determine the appropriate attack part. Note that
both the teacher model and student model are based on the
Faster-RCNN [16].

A. STAC

Teacher model trained on available labeled images. The
supervised loss is as follows:

ℓs(x, p
∗, t∗) =

∑
i

ℓs(x, p
∗
i , t

∗
i ) (1)

=
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i
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1

Ncls
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∗
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λ

Nneg
Lreg(pi, p

∗
i )

]
(2)

where i is an index of an anchor in a mini-batch. pi is the
predictive probability of an anchor being positive, ti is the 4-
dimensional coordinates of an anchor. p∗i is the binary label



TABLE I
EXPERIMENT RESULTS ON COCO-STANDARD ON SS-OD METHODS1 .

COCO-Standard
STAC Unbiased Teacher

1% 2% 5% 10% 1% 2% 5% 10%
Benign2 11.99 16.56 20.54 24.00 20.16 24.15 27.84 31.39
FGSM 1.59 2.96 2.97 3.55 2.26 2.81 3.09 3.66
PGD 1.56 3.38 2.97 3.41 0.89 0.98 1.07 1.28
MI-FGSM 1.36 3.05 2.73 2.99 0.95 0.96 1.19 1.38
1 We used the total loss of the auxiliary model to generate adversarial examples.
2 Benign refers to the performance of the model evaluated with clean images.

of an anchor with respect to ground-truth boxes, t∗i is the
ground-truth box coordinates of the box i for all p∗i = 1.
Nneg and Nreg are regularization factors for classification and
regression, respectively. λ is the weight for the regression loss
Lreg .

In STAC [10], the teacher model is fixed during the entire
process of training. Therefore, the teacher model becomes the
auxiliary model which is the target of attack. Then, the student
model naturally becomes an inference model and is subject to
attack by the adversarial example generated by the attacking
method.

B. Unbiased Teacher

In this model, Burn-In stage is required to make good
initialization for both student and teacher models. First, the
available supervised data is used to optimize our model θ
with the supervised loss Lsup. With supervised data Ds =
xs
i , y

s
i
Ns

i=1, the supervised loss consists of four losses: the RPN
classification loss Lrpn

cls , the RPN regression loss Lrpn
reg , ROI

classification loss Lcls
roi and ROI regression loss Lroi

reg .

Lsup =
∑
i
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s
i , y

s
i )
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cls (x

s
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s
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reg(x
s
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s
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After Burn-In, we duplicate the trained weights θ for both the
teacher and the student models (θt ← θ, θs ← θ). Next, the
teacher model trains as the temporal ensemble of the student
models in different time steps via EMA [23].

θt ← αθt + (1− α)θs (4)

This aligns with that the accuracy of the teacher is consistently
higher than the student. Hence the teacher model is used to
infer the output of the model which means the teacher model
is the inference model that is attacked by the adversarial
examples generated by the auxiliary model which is the
student model in Unbiased Teacher [11].

C. Total-loss Attack

Both STAC [10] and Unbiased Teacher [11] use Faster-
RCNN [16] as the base model for the auxiliary models that
are targeted for attack. When the auxiliary model is trained
on a small labeled data set, the loss is computed as eq.3. In
the previous studies [13]–[15], off-the-shelf attack methods
update the gradient using only Lroi

cls (x
s
i , y

s
i ) corresponding

to the classification loss in the RoI head, and use this to
generate adversarial examples for each attack method. In
this paper, an adversarial example is generated using total-
loss Lsup, which is the sum of all losses, rather than one
loss. One-step gradient-based method, such as the fast
gradient sign method (FGSM) [13], find adversarial examples
x̃ by maximizing the loss function Lsup(x̃, y). where Lsup is
the total-loss from auxiliary model mentioned earlier. FGSM
generates adversarial examples to satisfy the L∞ norm bound
||x̃− x||∞ ≤ ϵ:

x̃ = x+ ϵ · sign(▽xLsup(x, y)) (5)

Iterative methods, such as the momentum iterative fast
gradient sign method (MI-FGSM) [15] and projected gradient
descent (PGD) [14] iteratively apply fast gradient multiple
times with a small step size α:

x̃t+1 = x̃t + α · sign(▽xLsup(x̃, y)) (6)

To make sure the generated adversarial examples satisfy the
bounds of L∞, can clip x̃t to around ϵ of x, or set α = ϵ

T
and T to the number of iterations. The iterative method was
found to be a more robust white box attack than the one-step
method, at the cost of less transferability [25], [26].

IV. EXPERIMENT

In this section, we conduct several experiments on the
COCO-standard dataset to validate the effectiveness of our
proposed method on SS-OD networks. Our experiment settings
are specified in Section IV-A. The quantitative results of our
experiments are explained in Section IV-B. We showed the dif-
ference between student and teacher models in Section IV-C.
In addition, an ablation study is provided in Section IV-D.

TABLE II
EXPERIMENT RESULTS FOR THE CROSS-NETWORK ATTACK.

STAC Unbiased Teacher
Same Model1 Cross2 Same Model Cross

FGSM 1.6 3.59 3.14 3.65
PGD 0.24 2.97 0.54 1.37

1 The adversarial example is crafted by the inference model.
It is held by the inference model.

2 The adversarial example is crafted by the auxiliary model. It
is held by the inference model.



Fig. 1. Illustration of adversarial examples on different loss functions generated by PGD attack. To easily show the impact, we set the number of iterations
N = 40. The perturbation is still human-imperceptible. Other settings are the same as the previous experiments.

Fig. 2. Illustration of detection in adversarial examples. Benign images are shown in the first column, and three other attack methods are shown in the second
to the fourth column. We only visualize the adversarial examples from the Unbiased Teacher since STAC shows a similar pattern.

A. Setup

Networks: We consider two representative SS-OD net-
works, i.e., STAC [10], and Unbiased Teacher [11]. We adopt
the settings of 1%, 2%, 5%, and 10% labeled data of MS-
COCO train2017 for training and val2017 for testing. The
total training iteration steps for each network are 180k. In
STAC, we replaced the geometric data augmentation with the
data augmentation of the Unbiased Teacher. Other settings are
the same as the settings of the original paper.

Implementation details: We prepared three widely used
attack methods, i.e., FGSM [13], PGD [14], and MI-FGSM

[15]. For a fair comparison, we follow the parameter settings
for the attack methods same as the previous studies. We set
the maximum perturbation of each pixel to be ϵ = 16. The
decay factor is set to be µ = 1.0 for the methods using
the momentum term. Maximum iteration for iteration-based
methods is set to be N = 20. We use mean average precision
(mAP) as an evaluation metric, and the performance is cross-
evaluated so that the perturbed image is generated by the
auxiliary model and the evaluation is held on the inference
model. For example, in Unbiased Teacher, we craft adversarial
examples only on the student network and test them on the



TABLE III
THE MAP OF USING ADVERSARIAL ATTACKS ON SS-OD METHODS WITH DIFFERENT

LOSSES1 .

STAC Unbiased Teacher
1% 2% 5% 10% 1% 2% 5% 10%

None 11.99 16.56 20.54 24.00 20.16 24.15 27.84 31.39

FGSM

Total-loss 1.59 2.96 2.97 3.55 2.26 2.81 3.09 3.66
Loss-cls 1.65 3.02 3.02 3.63 2.26 2.89 3.28 3.25
Loss-reg 2.32 3.84 3.97 4.61 3.01 3.77 4.44 4.81
Loss-rpn 3.04 4.45 5.08 6.04 4.43 5.27 6.09 6.72

PGD

Total-loss 1.56 3.38 2.97 3.41 0.89 0.98 1.07 1.28
Loss-cls 1.57 3.48 3.01 3.71 1.07 1.08 1.16 1.36
Loss-reg 2.13 4.22 3.98 4.71 1.68 1.94 2.14 2.70
Loss-rpn 2.89 5.05 5.09 6.55 3.70 4.87 5.47 6.39

1 Total loss outperforms the compared single loss function. We observed that classification loss
is the most effective loss between its comparisons and even exceeds the performance of total
loss in Unbiased Teacher trained with 10% labeled data.

teacher network. Evaluation of STAC works in a reverse
manner as the student network is the inference model. This can
be considered a black-box attack because student and teacher
models have different training data and processes.

B. Quantitative Results

We first evaluate the performance of our attacks on two
SS-OD networks that are previously mentioned. Total-loss
is adopted to generate perturbation. Results are summarized
in Table I. We can observe that three attack methods drop
the mAP significantly compared with the mAP evaluated on
benign image samples. We also find that the networks trained
FGSM show gentle performance on all eight networks as one-
step gradient methods are robust on black-box attacks. On
the other hand, PGD works well with Unbiased Teacher but
underperforms in STAC than FGSM. From the results of PGD
attack, we can point out that the iterative attack method is
not likely to fit on the black box model which is almost the
same as the white box model. Lastly, MI-FGSM is equal to or
outperforms the two attack methods as adopting momentum
is effective on black-box attacks. In Figure 2, we apply our
attacks on four different images to the Unbiased Teacher.

C. Transferability between Teacher and Student Network

As we mentioned earlier, teacher and student networks
have the same architecture but the training data and process
is different. So applying the perturbations learned from the
auxiliary model to the inference network can be considered a
black-box attack.

To validate our hypothesis, we generated adversarial exam-
ples by using the loss gradient information of the inference
model and attacking the same model. This kind of attack
is a white-box attack without a doubt. We observed that
attacking itself drops mAP more than using perturbed image
generated by using the auxiliary model which demonstrates
our hypothesis. Additionally, we would like to focus that
the performance of PGD drops significantly in cross-attacks
compared with FGSM. This is due to the over-fitting of
iterative attack methods. Lastly, cross-attacks on Unbiased
Teacher are more effective than the attacks in STAC. This

could be explained that the two networks in Unbiased Teacher
have more similarity than the networks in STAC because
the teacher network shares the model weights of the student
models by EMA training. We conclude that our attacks can
be more effective not only in Unbiased Teacher but also in
recent SS-OD methods [11], [24], [27] which applies EMA
during the training process [23]. Detailed results are shown in
Table II.

D. Ablation Study

We perform a simple ablation study to investigate the impact
of adopting total-loss gradient information to generate adver-
sarial examples. The study analyzes the impact of selecting
the loss functions on the detector’s performance degradation.
As shown in Table III, combining all the losses of Faster R-
CNN [16] is the most effective choice. One interesting point
we observed is that adversarial examples generated by using
only RPN loss have weak mAP degradation compared with
others. This is because the loss gradient of RPN has small
values so more iteration is required. Using the classification
loss causes a significant drop however using total loss still
performs better.

For clear interpretation, visualization is provided in Figure
1. As can be seen in Figure 1, adversarial samples using
total-loss gradient information lead to more misclassification
and inaccurate bounding boxes. Furthermore, our observations
reveal that selecting various single-loss functions leads to the
loss of different capabilities in the detectors. For example,
the detectors fail to localize the object when we use box
regression loss in the third column. In contrast, adversarial
examples using classification loss fool the detector to generate
inaccurate bounding boxes and classification. Therefore, we
can conclude that choosing different loss functions can attack
different abilities of object detectors.

V. CONCLUSION

In this paper, we proved that verified adversarial attack in
the supervised learning model is also working on SS-OD, by
analyzing the effect of SS-OD on performance by attacking
the inference model with the adversarial example generated by



the auxiliary model. A performance of SS-OD decrease of at
least 80% and a maximum of 95% by off-the-shelf attacking
methods. We found that state-of-the-art SS-OD methods are
more vulnerable on adversarial attacks due to their parameter-
sharing training strategy. The impact of adversarial examples
generated by the type of loss was also analyzed. Experimental
results show that adversarial examples generated using total-
loss degrade the performance of the target model more than
when using single-loss.
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