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Abstract— Estimating the time of arrival (ETA) in public 
transportation can be challenging due to incomplete data and 
the complex nature of the urban environment. This study aims 
to address persistent criticism of the poor punctuality problem 
in Malaysian buses through the modeling of bus arrival time 
predictions. The study uses geographical and time data to 
predict bus arrival times through several boosting models. The 
data cleaning method enhanced data quality by eliminating 
invariable entries, segmenting the bus route for a more granular 
analysis, and encoding the data for improved structure and 
reliability. Through the implementation of Boruta for feature 
selection, relevant variables crucial for prediction were 
identified, contributing to the model's precision. The results 
highlighted LightGBM's superiority over AdaBoost and 
XGBoost, exhibiting the highest accuracy and a balanced level 
of complexity. This integrated methodology not only presents a 
robust prediction model but also showcases a potential practical 
implementation.     

Keywords—bus arrival prediction, Boosting, Boruta, 
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I. INTRODUCTION  
Public transportation plays a crucial role in the daily lives 

of urban residents, providing an efficient mode of commuting. 
Buses remain the most affordable public transport option in 
Johor Bahru, aside from taxis, meeting the diverse travel needs 
of the population. However, one of the enduring challenges 
faced by bus passengers is the uncertainty surrounding bus 
arrival times, leading to frustration and inconvenience. A 
study revealed that Malaysians have grappled with similar 
problems for decades, including the punctuality of bus drivers, 
a lack of schedule information, and a lack of continuous 
supervision by authorities [1].  

The necessity for a prediction model to forecast bus travel 
times has become increasingly evident in recent years. 
However, the high installation and maintenance costs of On-
Board Diagnosis (OBD) sensors [2], make it progressively 
challenging to collect and predict bus arrival time data. 
Moreover, sensor data is known for its temporal and spatial 
correlation characteristics. Temporal correlation implies that 
current moment data has a quantitative relationship with next 
moment data, potentially leading to invariable data. Spatial 
correlation suggests that data generated by nodes in a specific 
space have similar quantitative relationships. For example, 
sensor data collected from a bus route may exhibit similar 
error ranges [3].    

Besides, computational resources are also one of the major 
issues. Most of the proposed models require a significant 
amount of resources, such as deep learning [4, 5] and support 
vector machine [6]. Although these models produce relatively 
accurate predictions, they demand substantial resources, 
making them impractical in our case. 

 This paper addresses these issues by implementing: 

1. A data cleaning method to improve data quality by 
removing duplicate data from Bluetooth Low Energy 
(BLE) based system [7], breaking down bus routes 
into segments, and transforming data for training. 

2. Feature selection method to select the most relevant 
features through the use of Boruta. 

3. Boosting models to minimize computational power 
while preserving accuracy. 

The rest of this paper is organized as follows. Section II 
presents the related works on dealing with bus ETA. Section 
III describes the data and methods used in these experiments. 
The results and discussions are presented in Section IV. 
Finally, the conclusion and future works are provided in 
Section V.  

 

II. LITERATURE REVIEW 

A. Data Preprocessing 

One of the challenges in handling sensor data is dealing 
with noisy data. There is a high density of GPS points around 
a fixed location when a bus is approaching a bus stop. This 
density makes it difficult to precisely determine when the bus 
arrives, leaves, or stays at such stops—a phenomenon referred 
to as stay points issues. Additionally, missing data points are 
common along bus routes due to sensor failures. [8] addresses 
these challenges through trip segmentation and points 
interpolation methods. In trip segmentation, duplicate GPS 
points are removed. Furthermore, if the time difference 
between two consecutive GPS points is greater than 900 
seconds, the point is treated as the last point of one trip and the 
first point of the next trip, resolving the missing data issue. For 
stop-based trip interpolation, kd-tree method is used to search 
for the nearest bus stop corresponding to the GPS data and fed 
this information into machine learning models. The 
application of these methods resulted in the best model 
demonstrating a low Root Mean Square Error (RMSE) value 
of 128 seconds per stop. 



[9] proposed a spatial-based feature vector analysis to 
address the complexity and variability of city traffic. It 
suggests a similar method to that of [8], involving slicing the 
bus route and subsequently calculating the average travel 
speed to tackle the issue. Consequently, this approach yields 
satisfactory performance, with the prediction error for each 
station being below 1 minute. 

B. Feature Selection  

Feature selection is necessary when one is interested in 
discovering the mechanism related to the subject of interest 
rather than building a black-box model. In this case, 
identifying variables that are crucial to the prediction model 
is important for understanding how these variables affect the 
model. 

One of the most common methods for finding correlations 
between variables is using the filter method. The filter 
method selects features based on a performance measure, 
regardless of the employed data modeling algorithm. It can 
be classified into information, distance, consistency, 
similarity, and statistical measures [10]. However, the filter 
method can only provide correlations between features and 
the target variable, not with other features. Therefore, one is 
restricted to the wrapper method, which is more 
computationally intensive than the filter method. 

Boruta, as a wrapper method, has gained popularity 
recently. It offers a heuristic procedure designed to find all 
relevant attributes, including those weakly relevant attributes. 
The algorithm is capable of identifying attributes that are 
independently correlated with some other variables [11].  

C. Modelling 

Existing works focusing on building bus prediction 
models fall into these few categories: 

1) Time Series Model: This model assumes that the 
temporal variations of the predicted value are periodic and 
forecasts the predicted value based on historical data. [9] used 
a hybrid of Long-Term Short-Term Memory (LSTM) and 
Artificial Neural Network (ANN) models to predict bus 
arrival time in China. It successfully predicts the bus arrival 
time with outstanding performance, an RMSE value of 22.82 
seconds. One of the most important parameters for these 
models is the window length [12]. Without constant time 
lags, time series forecasting is hardly relevant. 

2) Support Vector Machine (SVM): [6] used a hybrid of 
genetic algorithms and SVM to predict bus arrival time. It 
summarizes that the implementation of a genetic algorithm 
into SVM offered a globally optimal solution, helping the 
algorithm perform better than neural networks and traditional 
SVM methods. However, the SVM model consumes a lot of 
computational power when dealing with big data [13].  

3) Ensembled Method: [14] introduces ensemble learning 
methods, including bagging, boosting, and stacking methods 
to predict bus travel time. The prediction results show that 
boosting and stacking methods outperformed other 
algorithms in terms of prediction accuracy. Another study on 
the Gradient Boosting algorithm further justifies that 
Adaboost [15], LightGBM and XGBoost, representative 
form boosting family [16] are able to model nonlinear data, 
offering high accuracy and a scalable solution. 

III. METHODOLOGY 
This research utilized data from a BLE-based fleet 

tracking and analytics [7] system that had been installed in 
Johor Bahru, Malaysia. It consists of two service routes: 
P211, from Terminal Taman U to Larkin Sentral and vice 
versa, and P411, from Terminal Kulai to Larkin Sentral and 
vice versa as illustrated in Fig. 1 and Fig. 2. 

BLE-based sensors are installed at selected bus stops. 
When the bus approaches the bus stop, it will be detected by 
the sensors and uploaded to the cloud storage. The data 
consist of 47k instances and 11 features. Table 1 lists the 
features and their corresponding descriptions. 
 

TABLE 1 FEATURES AND ITS DESCRIPTIONS 
 

Features Description 
Bus_id The unique id of the bus 

Route_id The unique id of the route 
Latitude Latitude of the bus 

Longitude Longitude of the bus 
TimeStamp Timestamp when the instance is recorded 
Bus stop* Bus stop no of the bus 

Route order* Current order of the route 
Dest_route_order* Destination of the bus 

Name* Nearest Bus stop name 
Route* Name of the route 

dist_from_bus_stop* Current distance of bus from the nearest bus 
stop 

Sin_half_hour* Hour encoded in sine 
Cos_half_hour* Hour encoded in cosine 

Sin_month* Month encoded in sine 
Cos_month* Month encoded in cosine 

Sin_day* Day encoded in sine 
Cos_day* Day encoded in cosine 

 
Fig. 1: P211 bus route from Larkin Sentral to Terminal Taman Universiti 

 
Fig. 2: P411 bus route from Larkin Sentral to Terminal Kulai 



Time diff* The difference of neighbouring timestamp data 
(*) indicates derived attribute 
A. Data Cleaning and Preparation 

The data cleaning and preparation steps are shown in Fig. 3.  

1) Map the location of bus to the nearest bus stop: Since 
the bus is captured by the sensor when approaching the bus 
stop, it is possible to identify the location of the bus and the 
time it reaches the bus stop. The Ckd Tree is used to match 
the bus location to the nearest bus stop. Different from the 
normal kd tree, it uses the midpoint splitting rule to choose 
the axis and splitting point, making the search more efficient 
[17].  

2) Remove duplicates and keep only the latest records : 
As the bus approaches the sensor, the sensor tends to record 
multiple values, affecting data quality. In this project, only 
the latest record is kept, and others are removed. This is 
achieved through searching for points where the bus stop ID 
changes, and only the previous record remains.  

3) Slicing route into sections and compute time required 
to travel across: Sensors were not installed at all bus stop and 
sometimes the sensors were down. It resulted in missing data. 
For example, for the bus route travel from Larkin Sentral to 
Terminal Taman Universiti, the sensor only installed at 12 
bus stops out of 28 bus stops, so there are no .data captured 
at the remaining 16 bus stops. To resolve this issue, the data 
were further split into sections based on the bus route. Then, 
the required time to travel from one bus stop to the next 
consecutive bus stop is calculated. Incomplete sections are 
excluded from this study. 

4) Encode cyclical data using sine cosine method : Next, 
cyclical data, including month, day, and hours, are encoded 
using the sine-cosine method. The formula is listed as 
follows: 
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𝑠𝑖𝑛𝑚𝑜𝑛𝑡ℎ = sin(2 × 𝜋 × 𝑚𝑜𝑛𝑡ℎ	 ÷ 12)        (4) 

𝑐𝑜𝑠𝑚𝑜𝑛𝑡ℎ = cos(2 × 𝜋 × 𝑚𝑜𝑛𝑡ℎ	 ÷ 12)       (5) 

𝑠𝑖𝑛𝑑𝑎𝑦 = sin(2 × 𝜋 × 𝑑𝑎𝑦	 ÷ 7)       (6) 

𝑐𝑜𝑠𝑑𝑎𝑦 = cos(2 × 𝜋 × 𝑑𝑎𝑦	 ÷ 7)      (7) 

Equation (1) to (7) shows the encoding of hour, month, 
and day respectively. The division of daily cycle of 24 hours 
into half an hour enabled a granular analysis, providing more 
insight [18]. Whereas for the month and day it is divided into 
12 (12 months in a year) and 7 (7 days in a week) 
respectively.  

5) Remove Outlier using IQR method : The presence of 
outliers imposes difficulties for the model to understand the 
data behavior. In this context, outliers are defined as data 
points that significantly deviate from the upper and lower 
bounds, representing instances where bus travel durations are 
exceptionally longer than the typical values. Interquartile 
Range Method (IQR) was used to remove outliers and 
removed approximately 4% of the data. The result of month 
August is shown in Fig. 4. 

 
B. Features selection 

Feature selection is carried out using the Boruta package. 
Boruta is a wrapper method designed around the Random 
Forest algorithm to iteratively remove features that are 
statistically irrelevant to the target value [11]. The selected 
features are listed in Table 2. 

TABLE 2 SELECTED FEATURES 

Features Descriptions 

Route id Route Id of the trip 

Route order Origin route order of the trip 

Destination route 
order Destination route order of the trip 

Sin half hour Hour encoded in sin 

Cosine half hour Hour encoded in cosine 

Time difference 
Time taken to travel from origin 
route order to destination, target 

variable 

 
Fig. 3: Data cleaning and preparation. 

Map the location of the bus to 
the nearest bus stop

Remove duplicates and keep the 
latest record

Slicing route into sections and 
compute the required time to 

travel across

Encode cyclical data using sine / 
cosine method

Remove Outlier Using IQR 
method

 
Fig. 4: Time difference vs hours remove outlier. 



 

C. Modelling 

Boosting algorithms are commonly used for modeling 
nonlinear datasets, combining multiple weak learners into a 
robust learner to enhance prediction accuracy. In this paper, 
three (3) models namely AdaBoost, XGBoost, and 
LightGBM are used for regression and feature importance 
analysis. 

1) LightGBM : LightGBM represents an enhancement of 
the Gradient Boosting algorithm, incorporating 
improvements in efficiency and scalability. This is achieved 
through the implementation of Gradient-based One-Side 
Sampling (GOSS) and Exclusive Feature Bundling (EFB) 
using a histogram algorithm data structure. GOSS selectively 
retains instances with large gradients while randomly 
sampling instances with small gradients. To maintain data 
distribution integrity, GOSS introduces a constant multiplier 
for instances with small gradients during information gain 
computation [19]. EFB is a method designed to reduce the 
number of features used in training by grouping together 
features with similar values and treating them as a single 
feature [19]. 

2) XGBoost : Proposing an extension on the Gradient 
Boosting Decision Tree, XGBoost expands the objective 
function to the second-order Taylor expansion. This 
extension provides a more accurate local approximation of 
the loss function, thereby improving decision tree 
construction and enhancing predictive accuracy. 
Additionally, XGBoost introduces regularization techniques 
to address overfitting issues [20].  

3) AdaBoost: AdaBoost combines multiple weak 
regression models into a strong regression model. Initially 
assigning equal weight to all data points, it sequentially fits 
weak regression models to the data. Subsequently, these weak 
learners are aggregated, and their predictions are weighted 
based on their performance, resulting in a final ensemble 
regression model. This process emphasizes hard data points, 

contributing to the robustness and accuracy of the regression 
model [21].  

D. Evaluation Method 

The dataset is sequentially split, with data from 
September serving as the testing set (approximately 20%), 
and the remaining data as the training set (about 80%). The 
training set undergoes validation through 5-fold cross-
validation, following the methodology proposed by [22] 
which has shown that 5-fold cross-validation yields superior 
outcomes. This approach ensures that the algorithm is tested 
on an unseen time range, providing a more accurate estimate 
of the model's quality. 

The three (3) models are evaluated using the metrics below:  

• Mean Squared Error (MSE): This metric calculates 
the average squared difference between the 
predicted and actual values of the target variable. 

• Root Mean Squared Error (RMSE): This metric is 
the square root of the MSE and is also commonly 
used to measure the average difference between 
predicted and actual values. RMSE is a more 
interpretable metric since it is expressed in the same 
units as the target variable. 

• Mean Absolute Error (MAE): This metric measures 
the average absolute difference between the 
predicted and actual values of the target variable. 
MAE is less sensitive to outliers than MSE, making 
it a useful metric when dealing with skewed data. 

• R-squared (R2): This metric measures the 
proportion of the variance in the target variable that 
is explained by the model. A higher R-squared value 
indicates a better fit of the model. 

 

IV. RESULT AND DISCUSSION 

 

TABLE 3 PERFORMANCE OF LIGHTGBM, ADABOOST AND XGBOOST 

 

Algorithms 
Training Testing Training 

Time (s) R2 MAE MSE RMSE R2 MAE MSE RMSE 
With cyclical encoding features 

LightGBM 
0.8705 26.9656 1529.5820 39.1009 0.8468 30.0727 2079.6053 45.6027 3.75 

AdaBoost 0.5409 53.6239 5424.0889 73.6484 0.4899 64.2462 6923.4502 83.2073 0.2031 

XGBoost 0.8361 30.4841 1936.6205 44.0071 0.7481 37.8071 3419.7583 58.4787 9.1875 

Without cyclical encoding features 

LightGBM 0.8219 31.9949 2104.1626 45.8712 0.8145 32.7940 2517.8129 50.1778 2.4219 

AdaBoost 0.5409 53.6239 5424.0889 73.6484 0.4899 64.2462 6923.4502 83.2073 0.1719 

XGBoost 0.7858 34.8125 2530.1913 50.3010 0.7184 41.4807 3822.7701 61.8286 6.5156 

 

Table 3 displays the performance of LightGBM, 
AdaBoost, and XGBoost. Overall, LightGBM achieves the 
highest accuracy, with the lowest MAE, MSE, and RMSE 
values, which are 30.0727, 2079.6053, and 45.6027, 

respectively, across all the algorithms. Additionally, it has 
the highest R-squared value, reaching 0.8468, indicating its 
ability to understand the pattern of the dataset. Following 
LightGBM is XGBoost, which achieves an R-squared value 
of 0.7481, along with comparable MAE, MSE, and RMSE 
values of 37.8071, 3419.7583, and 58.4787. 



Although AdaBoost exhibits the lowest accuracy, with 
the lowest R-squared, MAE, MSE, and RMSE values at 
0.4899, 64.2462, 6923.4502, and 83.2073, respectively, its 
training time is the shortest, completing training in only 
0.2031 seconds. In contrast, LightGBM's training time is 18 
times that of AdaBoost, taking 3.75 seconds, while 
XGBoost is approximately 100 times longer, requiring 
9.1875 seconds.  

 All predictions were made using only five features: 
Route ID, Route Order, Destination Route Order, Sine Half 
Hour, and Cosine Half Hour. It is evident that significant 
time differences exist between routes and hours. For 
example, time required to travel through a route is lowest 
from Terminal Taman Universiti to Larkin Sentral, taking 
only about 86 seconds to travel to the next bus stop about 
0.7 km , significantly lower than its return bus route which 
takes about 92 seconds. Similar pattern also observed in bus 
route from Kulai Bus Terminal to Larkin Terminal and its 
return bus route, in which bus travel time across 1 bus stop 
distance, about 1 km takes 115 seconds and 92 seconds 
respectively. Additionally, it is observed that buses take 
longer to travel at 7 am and 7 pm compared to other periods. 

 Comparing the three models, LightGBM outperforms 
the others. It not only achieves the highest accuracy, with an 
RMSE of approximately 46 seconds and 85% R-squared but 
also has the shortest training time. It performs 10% better 
than XGBoost in terms of accuracy and is about 10 times 
faster. On the other hand, although AdaBoost is 10 times 
faster than LightGBM, its accuracy is unacceptable, falling 
about 35% less than LightGBM. 

 One reason for AdaBoost's relatively poor performance 
in this experiment is its sensitivity to outliers. As outliers are 
more likely to be misclassified, they are likely to carry larger 
weights, diminishing their generalization power [23]. The 
gradient boosting algorithm, by introducing a gradient-
based incremental search, enhances its generalization power 
and thus performs better than AdaBoost.  

 Besides, we also notice that the usage of cyclical 
features improves the R2 value about 3% and 3-5 seconds 
in terms of RMSE value. It shows that cyclical encoding 
effectively encodes cyclical information of time series data, 
improving model’s prediction power. Although it performs 
great at XGBoost and LightGBM model, it does not bring 
any effect to the AdaBoost model. It aligns with the findings 
of  [24] where not all model benefit from cyclical encoding.  

 

V. CONCLUSION AND FUTURE WORK 

 This paper evaluated the performance of bus arrival 
prediction model using three (3) boosting models: 
AdaBoost, XGBoost, and LightGBM. The results indicated 
that LightGBM surpassed both XGBoost and AdaBoost, 
demonstrating superior accuracy and efficiency. Despite 
having the shortest runtime, AdaBoost performed the least 
accurately among the three algorithms. 

 To obtain an accurate estimated time of arrival, various 
parameters such as flood, nearby traffic, accidents have to 
be complete. Hence, the proposed study only fits to the 
existing situation. 

In future work, our goal is to enhance the performance 
of ETA prediction by exploring the combination of multiple 

stacking model algorithms. This approach aims to build a 
more robust model capable of mitigating the impact of noise 
and further improving prediction accuracy. 
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