

Predicting Estimated Time of Arrival Using
Boosting Models

Say-Hong Kam
School of Computer Sciences

Universiti Sains Malaysia
Penang, Malaysia

kamsayhong@student.usm.my

Sye-Loong Keoh
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

SyeLoong.Keoh@glasgow.ac.uk

Yung-Wey Chong
National Advanced IPv6 Centre

Universiti Sains Malaysia
Penang, Malaysia
chong@usm.my

Somnuk Phon-Amnuaisuk
School of Computing and Informatics

Universiti Teknologi Brunei
Brunei, Brunei

span.amnuaisuk@gmail.com

Noor Farizah Ibrahim
School of Computer Sciences

Universiti Sains Malaysia
Penang, Malaysia
nfarizah@usm.my

Sharul Kamal Abdul Rahim
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
Johor, Malaysia

sharulkamal@utm.my

Abstract— Estimating the time of arrival (ETA) in public
transportation can be challenging due to incomplete data and
the complex nature of the urban environment. This study aims
to address persistent criticism of the poor punctuality problem
in Malaysian buses through the modeling of bus arrival time
predictions. The study uses geographical and time data to
predict bus arrival times through several boosting models. The
data cleaning method enhanced data quality by eliminating
invariable entries, segmenting the bus route for a more granular
analysis, and encoding the data for improved structure and
reliability. Through the implementation of Boruta for feature
selection, relevant variables crucial for prediction were
identified, contributing to the model's precision. The results
highlighted LightGBM's superiority over AdaBoost and
XGBoost, exhibiting the highest accuracy and a balanced level
of complexity. This integrated methodology not only presents a
robust prediction model but also showcases a potential practical
implementation.

Keywords—bus arrival prediction, Boosting, Boruta,
LightGBM, XGBoost, AdaBoost

I. INTRODUCTION
Public transportation plays a crucial role in the daily lives

of urban residents, providing an efficient mode of commuting.
Buses remain the most affordable public transport option in
Johor Bahru, aside from taxis, meeting the diverse travel needs
of the population. However, one of the enduring challenges
faced by bus passengers is the uncertainty surrounding bus
arrival times, leading to frustration and inconvenience. A
study revealed that Malaysians have grappled with similar
problems for decades, including the punctuality of bus drivers,
a lack of schedule information, and a lack of continuous
supervision by authorities [1].

The necessity for a prediction model to forecast bus travel
times has become increasingly evident in recent years.
However, the high installation and maintenance costs of On-
Board Diagnosis (OBD) sensors [2], make it progressively
challenging to collect and predict bus arrival time data.
Moreover, sensor data is known for its temporal and spatial
correlation characteristics. Temporal correlation implies that
current moment data has a quantitative relationship with next
moment data, potentially leading to invariable data. Spatial
correlation suggests that data generated by nodes in a specific
space have similar quantitative relationships. For example,
sensor data collected from a bus route may exhibit similar
error ranges [3].

Besides, computational resources are also one of the major
issues. Most of the proposed models require a significant
amount of resources, such as deep learning [4, 5] and support
vector machine [6]. Although these models produce relatively
accurate predictions, they demand substantial resources,
making them impractical in our case.

 This paper addresses these issues by implementing:

1. A data cleaning method to improve data quality by
removing duplicate data from Bluetooth Low Energy
(BLE) based system [7], breaking down bus routes
into segments, and transforming data for training.

2. Feature selection method to select the most relevant
features through the use of Boruta.

3. Boosting models to minimize computational power
while preserving accuracy.

The rest of this paper is organized as follows. Section II
presents the related works on dealing with bus ETA. Section
III describes the data and methods used in these experiments.
The results and discussions are presented in Section IV.
Finally, the conclusion and future works are provided in
Section V.

II. LITERATURE REVIEW

A. Data Preprocessing

One of the challenges in handling sensor data is dealing
with noisy data. There is a high density of GPS points around
a fixed location when a bus is approaching a bus stop. This
density makes it difficult to precisely determine when the bus
arrives, leaves, or stays at such stops—a phenomenon referred
to as stay points issues. Additionally, missing data points are
common along bus routes due to sensor failures. [8] addresses
these challenges through trip segmentation and points
interpolation methods. In trip segmentation, duplicate GPS
points are removed. Furthermore, if the time difference
between two consecutive GPS points is greater than 900
seconds, the point is treated as the last point of one trip and the
first point of the next trip, resolving the missing data issue. For
stop-based trip interpolation, kd-tree method is used to search
for the nearest bus stop corresponding to the GPS data and fed
this information into machine learning models. The
application of these methods resulted in the best model
demonstrating a low Root Mean Square Error (RMSE) value
of 128 seconds per stop.

[9] proposed a spatial-based feature vector analysis to
address the complexity and variability of city traffic. It
suggests a similar method to that of [8], involving slicing the
bus route and subsequently calculating the average travel
speed to tackle the issue. Consequently, this approach yields
satisfactory performance, with the prediction error for each
station being below 1 minute.

B. Feature Selection

Feature selection is necessary when one is interested in
discovering the mechanism related to the subject of interest
rather than building a black-box model. In this case,
identifying variables that are crucial to the prediction model
is important for understanding how these variables affect the
model.

One of the most common methods for finding correlations
between variables is using the filter method. The filter
method selects features based on a performance measure,
regardless of the employed data modeling algorithm. It can
be classified into information, distance, consistency,
similarity, and statistical measures [10]. However, the filter
method can only provide correlations between features and
the target variable, not with other features. Therefore, one is
restricted to the wrapper method, which is more
computationally intensive than the filter method.

Boruta, as a wrapper method, has gained popularity
recently. It offers a heuristic procedure designed to find all
relevant attributes, including those weakly relevant attributes.
The algorithm is capable of identifying attributes that are
independently correlated with some other variables [11].

C. Modelling

Existing works focusing on building bus prediction
models fall into these few categories:

1) Time Series Model: This model assumes that the
temporal variations of the predicted value are periodic and
forecasts the predicted value based on historical data. [9] used
a hybrid of Long-Term Short-Term Memory (LSTM) and
Artificial Neural Network (ANN) models to predict bus
arrival time in China. It successfully predicts the bus arrival
time with outstanding performance, an RMSE value of 22.82
seconds. One of the most important parameters for these
models is the window length [12]. Without constant time
lags, time series forecasting is hardly relevant.

2) Support Vector Machine (SVM): [6] used a hybrid of
genetic algorithms and SVM to predict bus arrival time. It
summarizes that the implementation of a genetic algorithm
into SVM offered a globally optimal solution, helping the
algorithm perform better than neural networks and traditional
SVM methods. However, the SVM model consumes a lot of
computational power when dealing with big data [13].

3) Ensembled Method: [14] introduces ensemble learning
methods, including bagging, boosting, and stacking methods
to predict bus travel time. The prediction results show that
boosting and stacking methods outperformed other
algorithms in terms of prediction accuracy. Another study on
the Gradient Boosting algorithm further justifies that
Adaboost [15], LightGBM and XGBoost, representative
form boosting family [16] are able to model nonlinear data,
offering high accuracy and a scalable solution.

III. METHODOLOGY
This research utilized data from a BLE-based fleet

tracking and analytics [7] system that had been installed in
Johor Bahru, Malaysia. It consists of two service routes:
P211, from Terminal Taman U to Larkin Sentral and vice
versa, and P411, from Terminal Kulai to Larkin Sentral and
vice versa as illustrated in Fig. 1 and Fig. 2.

BLE-based sensors are installed at selected bus stops.
When the bus approaches the bus stop, it will be detected by
the sensors and uploaded to the cloud storage. The data
consist of 47k instances and 11 features. Table 1 lists the
features and their corresponding descriptions.

TABLE 1 FEATURES AND ITS DESCRIPTIONS

Features Description
Bus_id The unique id of the bus

Route_id The unique id of the route
Latitude Latitude of the bus

Longitude Longitude of the bus
TimeStamp Timestamp when the instance is recorded
Bus stop* Bus stop no of the bus

Route order* Current order of the route
Dest_route_order* Destination of the bus

Name* Nearest Bus stop name
Route* Name of the route

dist_from_bus_stop* Current distance of bus from the nearest bus
stop

Sin_half_hour* Hour encoded in sine
Cos_half_hour* Hour encoded in cosine

Sin_month* Month encoded in sine
Cos_month* Month encoded in cosine

Sin_day* Day encoded in sine
Cos_day* Day encoded in cosine

Fig. 1: P211 bus route from Larkin Sentral to Terminal Taman Universiti

Fig. 2: P411 bus route from Larkin Sentral to Terminal Kulai

Time diff* The difference of neighbouring timestamp data
(*) indicates derived attribute
A. Data Cleaning and Preparation

The data cleaning and preparation steps are shown in Fig. 3.

1) Map the location of bus to the nearest bus stop: Since
the bus is captured by the sensor when approaching the bus
stop, it is possible to identify the location of the bus and the
time it reaches the bus stop. The Ckd Tree is used to match
the bus location to the nearest bus stop. Different from the
normal kd tree, it uses the midpoint splitting rule to choose
the axis and splitting point, making the search more efficient
[17].

2) Remove duplicates and keep only the latest records :
As the bus approaches the sensor, the sensor tends to record
multiple values, affecting data quality. In this project, only
the latest record is kept, and others are removed. This is
achieved through searching for points where the bus stop ID
changes, and only the previous record remains.

3) Slicing route into sections and compute time required
to travel across: Sensors were not installed at all bus stop and
sometimes the sensors were down. It resulted in missing data.
For example, for the bus route travel from Larkin Sentral to
Terminal Taman Universiti, the sensor only installed at 12
bus stops out of 28 bus stops, so there are no .data captured
at the remaining 16 bus stops. To resolve this issue, the data
were further split into sections based on the bus route. Then,
the required time to travel from one bus stop to the next
consecutive bus stop is calculated. Incomplete sections are
excluded from this study.

4) Encode cyclical data using sine cosine method : Next,
cyclical data, including month, day, and hours, are encoded
using the sine-cosine method. The formula is listed as
follows:

𝑡!"#$!&'(=
)*+',-.	&$	/"0	

12
 (1)

𝑠𝑖𝑛!"#$!&'(= sin(2 × 𝜋 × ,!"#$!&'(
34

)	 (2)

𝑐𝑜𝑠!"#$!&'(= cos(2 × 𝜋 × ,!"#$!&'(
34

)	 (3)

𝑠𝑖𝑛𝑚𝑜𝑛𝑡ℎ = sin(2 × 𝜋 × 𝑚𝑜𝑛𝑡ℎ	 ÷ 12) (4)

𝑐𝑜𝑠𝑚𝑜𝑛𝑡ℎ = cos(2 × 𝜋 × 𝑚𝑜𝑛𝑡ℎ	 ÷ 12) (5)

𝑠𝑖𝑛𝑑𝑎𝑦 = sin(2 × 𝜋 × 𝑑𝑎𝑦	 ÷ 7) (6)

𝑐𝑜𝑠𝑑𝑎𝑦 = cos(2 × 𝜋 × 𝑑𝑎𝑦	 ÷ 7) (7)

Equation (1) to (7) shows the encoding of hour, month,
and day respectively. The division of daily cycle of 24 hours
into half an hour enabled a granular analysis, providing more
insight [18]. Whereas for the month and day it is divided into
12 (12 months in a year) and 7 (7 days in a week)
respectively.

5) Remove Outlier using IQR method : The presence of
outliers imposes difficulties for the model to understand the
data behavior. In this context, outliers are defined as data
points that significantly deviate from the upper and lower
bounds, representing instances where bus travel durations are
exceptionally longer than the typical values. Interquartile
Range Method (IQR) was used to remove outliers and
removed approximately 4% of the data. The result of month
August is shown in Fig. 4.

B. Features selection

Feature selection is carried out using the Boruta package.
Boruta is a wrapper method designed around the Random
Forest algorithm to iteratively remove features that are
statistically irrelevant to the target value [11]. The selected
features are listed in Table 2.

TABLE 2 SELECTED FEATURES

Features Descriptions

Route id Route Id of the trip

Route order Origin route order of the trip

Destination route
order Destination route order of the trip

Sin half hour Hour encoded in sin

Cosine half hour Hour encoded in cosine

Time difference
Time taken to travel from origin
route order to destination, target

variable

Fig. 3: Data cleaning and preparation.

Map the location of the bus to
the nearest bus stop

Remove duplicates and keep the
latest record

Slicing route into sections and
compute the required time to

travel across

Encode cyclical data using sine /
cosine method

Remove Outlier Using IQR
method

Fig. 4: Time difference vs hours remove outlier.

C. Modelling

Boosting algorithms are commonly used for modeling
nonlinear datasets, combining multiple weak learners into a
robust learner to enhance prediction accuracy. In this paper,
three (3) models namely AdaBoost, XGBoost, and
LightGBM are used for regression and feature importance
analysis.

1) LightGBM : LightGBM represents an enhancement of
the Gradient Boosting algorithm, incorporating
improvements in efficiency and scalability. This is achieved
through the implementation of Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB)
using a histogram algorithm data structure. GOSS selectively
retains instances with large gradients while randomly
sampling instances with small gradients. To maintain data
distribution integrity, GOSS introduces a constant multiplier
for instances with small gradients during information gain
computation [19]. EFB is a method designed to reduce the
number of features used in training by grouping together
features with similar values and treating them as a single
feature [19].

2) XGBoost : Proposing an extension on the Gradient
Boosting Decision Tree, XGBoost expands the objective
function to the second-order Taylor expansion. This
extension provides a more accurate local approximation of
the loss function, thereby improving decision tree
construction and enhancing predictive accuracy.
Additionally, XGBoost introduces regularization techniques
to address overfitting issues [20].

3) AdaBoost: AdaBoost combines multiple weak
regression models into a strong regression model. Initially
assigning equal weight to all data points, it sequentially fits
weak regression models to the data. Subsequently, these weak
learners are aggregated, and their predictions are weighted
based on their performance, resulting in a final ensemble
regression model. This process emphasizes hard data points,

contributing to the robustness and accuracy of the regression
model [21].

D. Evaluation Method

The dataset is sequentially split, with data from
September serving as the testing set (approximately 20%),
and the remaining data as the training set (about 80%). The
training set undergoes validation through 5-fold cross-
validation, following the methodology proposed by [22]
which has shown that 5-fold cross-validation yields superior
outcomes. This approach ensures that the algorithm is tested
on an unseen time range, providing a more accurate estimate
of the model's quality.

The three (3) models are evaluated using the metrics below:

• Mean Squared Error (MSE): This metric calculates
the average squared difference between the
predicted and actual values of the target variable.

• Root Mean Squared Error (RMSE): This metric is
the square root of the MSE and is also commonly
used to measure the average difference between
predicted and actual values. RMSE is a more
interpretable metric since it is expressed in the same
units as the target variable.

• Mean Absolute Error (MAE): This metric measures
the average absolute difference between the
predicted and actual values of the target variable.
MAE is less sensitive to outliers than MSE, making
it a useful metric when dealing with skewed data.

• R-squared (R2): This metric measures the
proportion of the variance in the target variable that
is explained by the model. A higher R-squared value
indicates a better fit of the model.

IV. RESULT AND DISCUSSION

TABLE 3 PERFORMANCE OF LIGHTGBM, ADABOOST AND XGBOOST

Algorithms
Training Testing Training

Time (s) R2 MAE MSE RMSE R2 MAE MSE RMSE
With cyclical encoding features

LightGBM
0.8705 26.9656 1529.5820 39.1009 0.8468 30.0727 2079.6053 45.6027 3.75

AdaBoost 0.5409 53.6239 5424.0889 73.6484 0.4899 64.2462 6923.4502 83.2073 0.2031

XGBoost 0.8361 30.4841 1936.6205 44.0071 0.7481 37.8071 3419.7583 58.4787 9.1875

Without cyclical encoding features

LightGBM 0.8219 31.9949 2104.1626 45.8712 0.8145 32.7940 2517.8129 50.1778 2.4219

AdaBoost 0.5409 53.6239 5424.0889 73.6484 0.4899 64.2462 6923.4502 83.2073 0.1719

XGBoost 0.7858 34.8125 2530.1913 50.3010 0.7184 41.4807 3822.7701 61.8286 6.5156

Table 3 displays the performance of LightGBM,
AdaBoost, and XGBoost. Overall, LightGBM achieves the
highest accuracy, with the lowest MAE, MSE, and RMSE
values, which are 30.0727, 2079.6053, and 45.6027,

respectively, across all the algorithms. Additionally, it has
the highest R-squared value, reaching 0.8468, indicating its
ability to understand the pattern of the dataset. Following
LightGBM is XGBoost, which achieves an R-squared value
of 0.7481, along with comparable MAE, MSE, and RMSE
values of 37.8071, 3419.7583, and 58.4787.

Although AdaBoost exhibits the lowest accuracy, with
the lowest R-squared, MAE, MSE, and RMSE values at
0.4899, 64.2462, 6923.4502, and 83.2073, respectively, its
training time is the shortest, completing training in only
0.2031 seconds. In contrast, LightGBM's training time is 18
times that of AdaBoost, taking 3.75 seconds, while
XGBoost is approximately 100 times longer, requiring
9.1875 seconds.

 All predictions were made using only five features:
Route ID, Route Order, Destination Route Order, Sine Half
Hour, and Cosine Half Hour. It is evident that significant
time differences exist between routes and hours. For
example, time required to travel through a route is lowest
from Terminal Taman Universiti to Larkin Sentral, taking
only about 86 seconds to travel to the next bus stop about
0.7 km , significantly lower than its return bus route which
takes about 92 seconds. Similar pattern also observed in bus
route from Kulai Bus Terminal to Larkin Terminal and its
return bus route, in which bus travel time across 1 bus stop
distance, about 1 km takes 115 seconds and 92 seconds
respectively. Additionally, it is observed that buses take
longer to travel at 7 am and 7 pm compared to other periods.

 Comparing the three models, LightGBM outperforms
the others. It not only achieves the highest accuracy, with an
RMSE of approximately 46 seconds and 85% R-squared but
also has the shortest training time. It performs 10% better
than XGBoost in terms of accuracy and is about 10 times
faster. On the other hand, although AdaBoost is 10 times
faster than LightGBM, its accuracy is unacceptable, falling
about 35% less than LightGBM.

 One reason for AdaBoost's relatively poor performance
in this experiment is its sensitivity to outliers. As outliers are
more likely to be misclassified, they are likely to carry larger
weights, diminishing their generalization power [23]. The
gradient boosting algorithm, by introducing a gradient-
based incremental search, enhances its generalization power
and thus performs better than AdaBoost.

 Besides, we also notice that the usage of cyclical
features improves the R2 value about 3% and 3-5 seconds
in terms of RMSE value. It shows that cyclical encoding
effectively encodes cyclical information of time series data,
improving model’s prediction power. Although it performs
great at XGBoost and LightGBM model, it does not bring
any effect to the AdaBoost model. It aligns with the findings
of [24] where not all model benefit from cyclical encoding.

V. CONCLUSION AND FUTURE WORK

 This paper evaluated the performance of bus arrival
prediction model using three (3) boosting models:
AdaBoost, XGBoost, and LightGBM. The results indicated
that LightGBM surpassed both XGBoost and AdaBoost,
demonstrating superior accuracy and efficiency. Despite
having the shortest runtime, AdaBoost performed the least
accurately among the three algorithms.

 To obtain an accurate estimated time of arrival, various
parameters such as flood, nearby traffic, accidents have to
be complete. Hence, the proposed study only fits to the
existing situation.

In future work, our goal is to enhance the performance
of ETA prediction by exploring the combination of multiple

stacking model algorithms. This approach aims to build a
more robust model capable of mitigating the impact of noise
and further improving prediction accuracy.

ACKNOWLEGMENT
This publication is the output of ASEAN IVO

(https://www.nict.go.jp/en/asean_ivo/Project_List_of_ASE
AN_IVO.html) project, “An IoT-based public transport data
collection and analytics framework using Bluetooth
proximity beacons” and financially support by NICT
(http://www.nict.go.jp/en/ index.html). The research was
also supported by Keio University and APNIC Foundation
under CBR grant number 304/PNAV/6501372/K164.

REFERENCES

[1] K. Soh, C. L. Chong, W. Wong, and Y. Hiew,
"Proclivity of university students to use public bus
transport service," Comprehensive Research
Journal of Education and General Studies
(CRJEGS), vol. 2, no. 2, pp. 24-34, 2014.

[2] M. A. B. SHAFIE, "rrnrrrrn," HOCHSCHULE
KARLSRUHE TECHNIK UND WIRTSCHAFT,
2016.

[3] C.-H. Zhou, B. Chen, Y. Gao, C. Zhang, and Z.-J.
Guo, "A technique of filtering dirty data based on
temporal-spatial correlation in wireless sensor
network," Procedia Environmental Sciences, vol.
10, pp. 511-516, 2011.

[4] N. C. Petersen, F. Rodrigues, and F. C. Pereira,
"Multi-output bus travel time prediction with
convolutional LSTM neural network," Expert
Systems with Applications, vol. 120, pp. 426-435,
2019.

[5] P. P. F. Balbin, J. C. Barker, C. K. Leung, M. Tran,
R. P. Wall, and A. Cuzzocrea, "Predictive
analytics on open big data for supporting smart
transportation services," Procedia Computer
Science, vol. 176, pp. 3009-3018, 2020.

[6] M. Yang, C. Chen, L. Wang, X. Yan, and L. Zhou,
"Bus arrival time prediction using support vector
machine with genetic algorithm," Neural Network
World, vol. 26, no. 3, p. 205, 2016.

[7] S. Gunady and S. L. Keoh, "A non-gps based
location tracking of public buses using bluetooth
proximity beacons," in 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT), 2019:
IEEE, pp. 606-611.

[8] D. Liu, J. Sun, and S. Wang, "Bustime: Which is
the right prediction model for my bus arrival
time?," in 2020 5th IEEE International
Conference on Big Data Analytics (ICBDA),
2020: IEEE, pp. 180-185.

[9] H. Liu, H. Xu, Y. Yan, Z. Cai, T. Sun, and W. Li,
"Bus arrival time prediction based on LSTM and
spatial-temporal feature vector," IEEE Access,
vol. 8, pp. 11917-11929, 2020.

[10] A. Jović, K. Brkić, and N. Bogunović, "A review
of feature selection methods with applications," in
2015 38th international convention on
information and communication technology,

electronics and microelectronics (MIPRO), 2015:
Ieee, pp. 1200-1205.

[11] M. B. Kursa and W. R. Rudnicki, "Feature
selection with the Boruta package," Journal of
statistical software, vol. 36, pp. 1-13, 2010.

[12] A. Azlan, Y. Yusof, and M. F. M. Mohsin,
"Determining the impact of window length on
time series forecasting using deep learning,"
International Journal of Advanced Computer
Research, vol. 9, no. 44, pp. 260-267, 2019.

[13] Y. Bin, Y. Zhongzhen, and Y. Baozhen, "Bus
arrival time prediction using support vector
machines," Journal of Intelligent Transportation
Systems, vol. 10, no. 4, pp. 151-158, 2006.

[14] G. Zhong, T. Yin, L. Li, J. Zhang, H. Zhang, and
B. Ran, "Bus travel time prediction based on
ensemble learning methods," IEEE Intelligent
Transportation Systems Magazine, vol. 14, no. 2,
pp. 174-189, 2020.

[15] W. Fan, S. J. Stolfo, and J. Zhang, "The
application of AdaBoost for distributed, scalable
and on-line learning," in Proceedings of the fifth
ACM SIGKDD international conference on
Knowledge discovery and data mining, 1999, pp.
362-366.

[16] V. A. Dev and M. R. Eden, "Formation lithology
classification using scalable gradient boosted
decision trees," Computers & chemical
engineering, vol. 128, pp. 392-404, 2019.

[17] S. Maneewongvatana and D. M. Mount, "It’s okay
to be skinny, if your friends are fat," in Center for
geometric computing 4th annual workshop on
computational geometry, 1999, vol. 2: Citeseer,
pp. 1-8.

[18] Y. T. Lim, "A Deep Learning based Prediction of
Bus Arrival Timings," Final Year Project Report
Singapore Institute of Technology-University of
Glasgow, 2023

[19] G. Ke et al., "Lightgbm: A highly efficient
gradient boosting decision tree," Advances in
neural information processing systems, vol. 30,
2017.

[20] T. Chen and C. Guestrin, "Xgboost: A scalable
tree boosting system," in Proceedings of the 22nd
acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp.
785-794.

[21] Y. Freund and R. E. Schapire, "A decision-
theoretic generalization of on-line learning and an
application to boosting," Journal of computer and
system sciences, vol. 55, no. 1, pp. 119-139, 1997.

[22] L. Breiman and P. Spector, "Submodel selection
and evaluation in regression. The X-random
case," International statistical review/revue
internationale de Statistique, pp. 291-319, 1992.

[23] A. H. Li and J. Bradic, "Boosting in the presence
of outliers: Adaptive classification with
nonconvex loss functions," Journal of the
American Statistical Association, vol. 113, no.
522, pp. 660-674, 2018.

[24] T. Mahajan, G. Singh, G. Bruns, G. Bruns, T.
Mahajan, and G. Singh, "An experimental

assessment of treatments for cyclical data," in
Proceedings of the 2021 Computer Science
Conference for CSU Undergraduates, Virtual,
2021, vol. 6, p. 22.

