Genetic Algorithm-Based Pruning for Efficient
DenseNet Architectures

Jingeun Kim
Department of Computer Engineering
Gachon University
Gyeonggi-do, Republic of Korea
wlsrms27 @gachon.ac.kr

Abstract—CNNs have shown remarkable performance on a va-
riety of computer vision problems. However, CNN-based models
require a lot of computational resources, which have limitations
of resource-constrained environments. To address this problem,
various lightweight techniques have been developed, such as
pruning of network structures. This paper employed a genetic
algorithm (GA) to implement pruning with various pruning
rates, aiming for the efficient DenseNet. We optimized the dense
connectivity pattern of DenseNet-BC (k=12) using a GA-based
pruning method with multi-dimensional encoding scheme. We
demonstrate that the proposed method can perform similarly
with fewer parameters than the baseline model.

Index Terms—genetic algorithm, pruning, deep learning, com-
puter vision

I. INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated
remarkable performance in various computer vision tasks, such
as image classification and object recognition. The emergence
of models such as LeNet [1] and AlexNet [2], which have
a simple structure, led to a visual geometry group network
(VGGNet) [3], which has a deeper network depth. How-
ever, the problem of gradient vanishing or exploding as the
layers become deeper led to the emergence of the residual
network (ResNet) [4], which solved this problem using skip-
connection. Then came densely connected convolutional net-
works (DenseNet), designed to be more parameter efficient
than ResNet and reduce over-fitting. Notably, DenseNet has
achieved state-of-the-art results in image classification with
the lowest number of parameters compared to other networks
[5].

Despite the successes of CNN-based models, it face lim-
itations on low-end devices, such as mobile devices, due
to their substantial computational and memory requirements
[6]. To tackle these challenges, researchers have proposed
methods to make CNNs lighter, including pruning [7], [8],
quantization [9], [10], and knowledge distillation [11], [12].
Among these methods, pruning, which involves removing
synapses connected to neurons, corresponds to a combinatorial
optimization problem [13].

Previous work has employed evolutionary algorithms to
address pruning methods for combinatorial optimization prob-
lems. EvoPruneDeepTL [14] utilizes a genetic algorithm to
prune the fully-connected layers of a transfer learning model,

Yong-Hyuk Kim
School of Software
Kwangwoon University
Seoul, Republic of Korea
yhdfly @kw.ac.kr

Yourim Yoon*
Department of Computer Engineering
Gachon University
Gyeonggi-do, Republic of Korea
yryoon@ gachon.ac.kr

aiming to enhance performance by reducing the number of
neurons. In DeepPruningES [15], the Multi-Objective Evolu-
tion Strategy (MOES) algorithm is applied for filter pruning
in deep convolutional neural networks (DCNNs) to decrease
model complexity. Cho et al. [16] employed a memetic genetic
algorithm for filter pruning to reduce forward convolution
computation while minimizing the decrease in accuracy.

This paper focuses on optimizing the dense connectiv-
ity pattern of DenseNet-BC (k=12), which has the fewest
parameters among the DenseNet variants, using a genetic
algorithm (GA). The experiment aims to reduce the parameter
number of DenseNet-BC (k=12) with various pruning rates
while minimizing the degradation in network performance.
We employed a heuristic method, the GA, to address the
combinatorial optimization problem of pruning. To evaluate
the proposed method, we compare the accuracy and number
of parameters of DenseNet-BC (k=12) and pruned DenseNet-
BC (k=12) on the CIFAR-10 dataset.

II. BACKGROUND
A. Dataset

CIFAR-10 is a small resolution (32x32) RGB image and
contains 60,000 pictures, of which 50,000 are the training
set and 10,000 are the test set. It also has ten classes, with
6 thousand images in each class [17]. We used random
horizontal flips and 32x32 random crop for data augmentation.

B. Genetic Algorithm

Genetic algorithms are optimization algorithms that mimic
natural evolution. The theory of natural evolution is that
new species can adapt to their environment better than their
ancestors through evolution. GA is a meta-heuristic algorithm
that solves problems through evolution. GA creates solutions
and uses fitness measures to evolve them. The fitness function
gives each solution a fitness value. Genetic operations such as
crossover and mutation are executed on the selected solution
based on fitness value [18]. This process is repeated until a
termination condition is met to improve the solution [19].

C. DenseNet

DenseNet uses dense connectivity to enhance the informa-
tion flow between layers. Dense connectivity means receiving

Dense Block 1

UONN[OAUO))

‘ IaA®R] uomISURI] ‘
!

Dense Block 2

Dense Block 3

IaKe] Surjood
}
maury
'
Juediy,,

| 10ke| uonIsuRI], |

Fig. 1. DenseNet architectures

and concatenating all feature maps produced in each layer.
Each layer generates k feature maps guided by the growth
rate to regulate the amount of information it contributes to
subsequent layers. Due to the substantial amount of informa-
tion acquired at each layer, bottleneck layers are employed to
reduce computational complexity. The structure of bottleneck
layers involves placing batch normalization (BN), rectified
linear unit (ReLU), and a 1x1 convolution layer (Conv) before
BN, ReLU, and a 3x3 Conv. When utilizing such bottleneck
layers, the model is referred to as DenseNet-B. For down-
sampling the feature maps, the transition layer consists of
BN, 1x1 Conv, and 2x2 average pooling layers. To enhance
model compression, the feature maps of the transition layer
are reduced by a factor denoted as 6, which was set to 0.5
in the experiments. When employing this approach, the model
is referred to as DenseNet-C. Therefore, in this paper, the
baseline model, referred to as DenseNet-BC (k=12), is a model
that contains bottleneck layers, compression, and has a growth
rate of 12.

III. METHODOLOGY

Figure 1 depicts the structure of DenseNet [5]. For the
baseline model in our experiments, DenseNet-BC (k=12) con-
sists of 16 Bottleneck blocks in each Dense block, with all
Bottleneck blocks connected through Dense Connections.

To optimize the dense connectivity pattern of DenseNet, we
applied a GA, an optimization technique inspired by Darwin’s
evolutionary theory. Using a multi-dimensional encoding of
(N+2)x(N+2), we represented connections among N bottle-
neck blocks, inputs, and outputs within a dense block.

O|l|p|p|p||O0|Ll|p|p|p||0]|1l]|pP|P|P
0101 (p|pPp||O0|O|1|p|lpP||O|O0O|1|p|P
ojojof1|p||O]lOjOof1]|p|]|O]jOfO|1l]|p
ojojofo|1]||o]|o|ofo|1]||0]|O]|OfO]|1
ojojofo|o||o|o|oflo|Oo||O]|O]|O|O]|O

Fig. 2. Example of multi-dimensional encoding

Figure 2 shows an example of multi-dimensional encoding
in DenseNet with three bottleneck blocks and three dense

blocks. We set a constraint to ensure a directed connection
between bottleneck blocks always exists, maintaining a min-
imum information flow. The remaining matrix elements are
filled with binary values based on pruning rate (p=50, 60, 70,
80, 90), where 1 indicates an enabled dense connection, and 0
indicates a disabled connection. In other words, DenseNet-BC
(k=12) is represented by a 3x18x18 matrix, corresponding to
its three dense blocks and 16 bottleneck blocks.

< >

Fig. 3. Example of crossover in multi-dimensional encoding

The fitness value for evaluating each individual is set to be
the accuracy on the test set after training the decoded model
for one epoch. It then creates a pair of offspring using the two
randomly selected parents. During crossover, it selects random
points in each row and column of a two-dimensional matrix.
Figure 3 shows an example of crossover in multi-dimensional
encoding. It generates the first offspring by utilizing the first
and third quadrants of the first parent and the second and fourth
quadrants of the second parent. Simultaneously, it generates
the second offspring using the second and fourth quadrants of
the first parent and the first and third quadrants of the second
parent.

Y

Fig. 4. Example of mutation in multi-dimensional encoding

Figure 4 depicts an example of a mutation in multi-
dimensional encoding. The bit-flip mutation by selecting ran-
dom points in each row and column of the two-dimensional
matrix was used.

TABLE I
PARAMETERS AND VALUES USED IN THE IMPLEMENTATION OF GENETIC
ALGORITHM
Parameter Value
Pruning rate 50, 60, 70, 80, 90
Population size 20
Number of generations 10
Crossover probability 100%
Mutation probability 10%
elitism rate 20%

Table I shows the parameters and values used to implement
the GA. The parameters such as pruning rate, population
size, number of generations, crossover probability, mutation
probability, and elitism rate must be determined to implement
GA. The population size and the number of generations are set
to 20 and 10, respectively. Crossover is applied with a 100%
probability, and the mutation rate is set to 10%. To move the
best individuals to the next generation, we copied the top 20%
of the parent and transferred the best 80% of the offspring to
the next generation. The proposed method in this paper was
implemented using PyTorch [20] and experimented on an Intel
Core i7-7700k CPU (4.20GHz), NVIDIA GeForce GTX 1090
GPU, and 64GB of memory.

IV. RESULTS

TABLE 11
PERFORMANCE COMPARISON OF DENSENET-BC (k=12) AND PRUNED
MODELS WITH VARIOUS PRUNING RATE

Model #Params | Accuracy
DenseNet-BC (k=12) 0.80M 95.49
w/pruning (p=50%) DenseNet-BC (k=12) 0.5IM 94.56
w/pruning (p=60%) DenseNet-BC (k=12) 0.55M 94.96
w/pruning (p=70%) DenseNet-BC (k=12) 0.61M 94.92
w/pruning (p=80%) DenseNet-BC (k=12) 0.68M 95.03
w/pruning (p=90%) DenseNet-BC (k=12) 0.78M 95.15

DefjseNet-BC (k=12)

95.4

95.2 4 .vrlnrunir-g (p=90%) DenseNet-BC (k=12)
w(pruning (p=80%) DenseNet-BC|{k=12)

w/pruning (p=60%) DenseNet-BC (k=12)
L4 .wfpruning (p=70%) DenseNet-BC (k=12)

Accuracy (%)

wipruning (p=50%) DenseNet-BC (k=12)
L

T T T T
0.65 0.70 0.75 0.80

params (M)

T T T
0.50 0.55 0.60

Fig. 5. Comparative analysis between DenseNet-BC (k=12) and pruned
DenseNet-BC (k=12) with various pruning rate

Table II and Figure 5 shows the accuracy and number of
parameters of the baseline model, DenseNet-BC (k=12), and
the pruned model with various pruning rates. When pruning
the baseline model through the proposed method (p=50), the
number of parameters was reduced by up to 36.25%, while
the accuracy decreased by only 0.93%. The proposed method
(p=60) reduced the number of parameters by 31.25%, with
only a 0.53% decrease in accuracy compared to the baseline
model. The proposed method (p=70) reduces the number of
parameters by 23.75% and only decreases the accuracy by
0.57%. The proposed method (p=80) reduces the number of
parameters by 15% compared to the baseline model, with
only a 0.43% decrease in accuracy. Finally, the results of the
proposed method (p=90) showed a reduction in the number of
parameters by up to 2.5%, with the accuracy decreasing by
0.34% compared to the baseline model. The results demon-
strate that the proposed method can find efficient models with
a minimal loss of accuracy (<1%) compared to the baseline
model while reducing the number of parameters.

V. CONCLUSIONS & FUTURE WORK

This paper proposes a GA-based pruning method, with
DenseNet-BC (k=12) as the baseline model. We compare the
accuracy and number of parameters with the baseline model,
demonstrating that our proposed pruning method reduces the
number of parameters and shows performance similar to that
of the baseline model. However, there is a limitation to this
research. It requires a high computational cost to find an
efficient model. To solve this problem, future works which
consider a surrogate model to approximate the fitness value
are required. It is also necessary to optimize different well-
known models to validate that the methodology is effective for
pruning and analyze whether it achieves higher performance
than other heuristic algorithms.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government

김진근

(MSIT) (No. 2021R1F1A1048466, No. 2022R1F1A1066017).
This work was also supported by the Ministry of Education of
the Republic of Korea and the National Research Foundation
of Korea (NRF-2022S1A5C2A07090938).

[1]

[6]

[7

—

[8

[t}

[9

—

(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

REFERENCES

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700-4708, 2017.
S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2790-2799, 2019.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.
J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and
X.-s. Hua, “Quantization networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7308—
7316, 2019.

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” arXiv
preprint arXiv:1702.03044, 2017.

F. Tung and G. Mori, “Similarity-preserving knowledge distillation,”
in Proceedings of the IEEE/CVF international conference on computer
vision, pp. 1365-1374, 2019.

J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4133-4141, 2017.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
arXiv preprint arXiv:1611.06440, vol. 3, 2016.

J. Poyatos, D. Molina, A. D. Martinez, J. Del Ser, and F. Herrera,
“Evoprunedeeptl: An evolutionary pruning model for transfer learning
based deep neural networks,” Neural Networks, vol. 158, pp. 59-82,
2023.

F. E. Fernandes Jr and G. G. Yen, “Pruning deep convolutional neural
networks architectures with evolution strategy,” Information Sciences,
vol. 552, pp. 2947, 2021.

H. H. Cho, H. J. Byun, M. K. Kim, J. Huh, and B.-R. Moon, “Evolu-
tionary pruning of deep convolutional networks by a memetic ga with
sped-up local optimization and glcm energy z-score,” in Proceedings of
the Companion Conference on Genetic and Evolutionary Computation,
pp. 715-718, 2023.

A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

G. Renner and A. Ekdrt, “Genetic algorithms in computer aided design,”
Computer-aided design, vol. 35, no. 8, pp. 709-726, 2003.

D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, pp. 65-85, 1994.

B. Amos and J. Z. Kolter, “A PyTorch Implementation of DenseNet.”
https://github.com/bamos/densenet.pytorch. Accessed: [November 21,
2023].

