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Abstract—Due to the immense advantages that include con-
tactless sensing, privacy-preserving, and lighting condition in-
sensitivity, radar systems have been applied in Human Activity
Recognition (HAR). The radar signal is often used in its raw form,
pre-processed into micro-Doppler signatures or represented as
voxelized Point clouds. However, the point cloud data is usually
sparse and non-uniform. HAR deep learning models ought to
learn the spatial and temporal features. These models should be
robust for all considered activities and computationally efficient.
Instead of other deep learning techniques used in literature,
dilated causal convolutions (DCC) provide a broad receptive field
with a few layers while preserving the resolution of the inputs
throughout the model, thereby learning the spatial and temporal
cues. In this paper, we investigated the use of DCC in combination
with other deep learning techniques like residual blocks (RDCC),
transformer encoders (TED), and bidirectional long-short-term
memory (BiLSTM). We subsequently proposed the DCCB model
that consists of DCC layers and BiLSTM layers. The proposed
model exhibits a commendable performance in terms of accuracy,
and generalization especially in terms of balanced robustness for
all activities.

Index Terms—activity recognition, dilated convolutions, radar
data

I. INTRODUCTION

Deep learning techniques in human activity recognition
(HAR) have led to the improved lifestyle of people especially
the elderly through monitoring their daily living activities.
Besides the camera and wearable sensors, the radar sensors can
be utilized to track and detect human activities. They exhibit
advantages of contact-less sensing, lighting condition insensi-
tivity, and privacy preservation compared to their counterparts
since they only use the radar signal to sense the activity of
the non-stationary target [1]. The radar sensor captures signals
that depict actions performed either away or towards its line
of sight. The received radar signal depicts and can measure
the range, and Doppler information about target objects [2].
The range time map (RTM), Doppler time map (DTM), and
angle time map (ATM) can be computed, extracted, and used
as inputs for deep learning models [3]. Several HAR studies
that use the radar sensor data have been proposed. An adaptive
threshold method that highlights the region of interest in micro-

Doppler signatures was proposed in [4]. A deep learning model
that detects continuous HAR activities was proposed in [5].
These works obtain features extracted from the radar signal
through signal processing as input to the deep learning models.
Though commendable results are obtained, the computational
cost involved makes it expensive for end-to-end models of this
nature to be deployed in low-resource devices. The radar signal
can also be transformed into three-dimensional point cloud data
that depicts the range, velocity, elevation, and azimuth angles
of the target. The point cloud can subsequently be used as
the input of the deep learning models. The point cloud can be
voxelized [6] or transformed into a multi-view representation
[7]. The radar sensors produce point clouds that are sparse
and non-uniform which makes it hard for the deep learning
models to learn the local context that exists in them. The
point cloud voxelization method is used in [6] to alleviate this
problem. However, voxels increase the memory and compu-
tational requirements. As observed in [8], [9] and [10], DCC
layers provide a broad receptive field with a few layers while
preserving the resolution of the inputs throughout the model.
We therefore investigate the use of DCC in combination with
other deep learning techniques like RDCC, TED, and BiLSTM
to solve the computational efficiency problem and improve
HAR model robustness. We subsequently propose the DCCB
model that consists of DCC and BiLSTM layers that is robust
and computationally efficient according to our experiments.

The rest of the paper is organized as follows: the methods
are presented in Section II. Section III presents the results and
discussion. The paper is concluded in Section IV.

II. METHODS

In this section we present the datasets, the proposed model
and the experiments carried out in this paper.

Dataset:We used the mmActivity radar point cloud dataset
that was provided in [6]. The point cloud datasets are used to
create their voxelized representation which are fed as inputs
into the models. In our experiments, we evaluated different
dimensions of the voxelized representations of point clouds
together with their velocity to find out the behavior of the



Fig. 1: The proposed DCCB model that consists of dilated
causal convolution (DCC) and BiLSTM layers.

models and the performance they exhibit. Because of mem-
ory constraints and the need for computationally efficient
models, we used a voxel representation of input dimensions
(60*10*8*8).

The Proposed Model: We propose the DCCB model that
consists of the DCC and BiLSTM layers. This model en-
sures robust and computationally efficient activity recognition.
Though the BiLSTM alone or in combination with the time
distributed CNN used in [6] exhibits a commendable perfor-
mance, it fails to be uniformly robust on all the activities
in addition to being computationally expensive. It specifically
confuses activities that involve a similar change in velocity like
jumping, jumping jacks, and walking. In addition, the BiLSTM
encounters problems of slow convergence and sluggish training
that uses a lot of memory resources and encounters the van-
ishing gradient problem. Like the traditional CNN, the time-
distributed CNN does not capture temporal clues over time
which are crucial for continuous HAR. In addition, its receptive
field is limited to the kernel size used making its selection
crucial for the model’s efficiency. A very small kernel may
miss global patterns yet a too large one may overlook local

information. In this paper, we used dilated causal convolution
layers in combination with BiLSTM layers as shown in Fig. 1.
The dilated causal convolutions help the model to use a large
receptive field which is crucial for effective feature extraction
with less increase in the number of parameters compared to the
number of layers and consider spatial as well as temporal cues
among the extracted features. The BiLSTM handles long-term
dependencies.

Experiments: To ascertain the combination of techniques
that can exhibit the most robust results in terms of generaliza-
tion, confusion ratio, and computational efficiency, we carried
out some experiments. They included models with only DCC
layers, only RDCC blocks, a combination of DCC and TED
layers, a combination of RDCC blocks and TED layers, a
combination of RDCC blocks, TED and BiLSTM layers, a
combination of RDCC and BiLSTM layers, and a combination
of DCC and BiLSTM layers which forms the DCCB model we
present in this paper.

III. RESULTS AND DISCUSSION

A. Results

The results shown in Table I show the performance of
different combinations of deep learning techniques with DCC
layers. The results are reported in terms of accuracy (A), loss
(L), and confusion ratio of jumping (CRJ) which is often
confused with jumping jerks and walking by models. We also
present confusion ratio (CRB) results for boxing. To assess
the computational complexity, we present the total number of
parameters for each of the models. The confusion matrices for
two particular experiments which show the benefit of Dilated
convolution but also help us explore the trade-off between
computational complexity and robustness are shown in Fig.
2. The performance of the proposed DCCB model compared
to the other models investigated in this paper shows that DCC
layers are significant in the performance of the models that
use sparse and nonuniform point cloud radar data however a
trade-off between complexity and robustness needs to be given
careful attention.

B. Discussion

As shown in Table I and the confusion matrices in Fig. 2, the
DCC operation gives a better receptive field for the sequential
data in addition to learning the long-term dependencies. This
is why each model gives a good accuracy. However, besides
the accuracy, it is important to assess the robustness of the
model for all the activities in the dataset and the computational
complexity of the model. From the results, we observe that
models that utilize the RDCC blocks have less computational
complexity compared to the models that use DCC layers.
The situation is similar even when a transformer encoder
that utilizes multi-head attention of 4 to 8 heads is used
in combination with the RDCC blocks. This is because the
residual nature caused by the gated activation units (GAU) [8]
and concatenation does not increase the number of parameters



TABLE I: Performance of the different models used in our experiments.

Model A(%) L CRJ(%) CRB(%) Parameters
DCC 80.87 0.662 77.00 85.00 6,850,565
RDCC 87.16 1.274 70.00 81.00 2,264,325
DCC-TED 87.45 0.943 69.00 85.00 7,437,861
RDCC-TED 79.23 1.692 59.00 95.00 1,834,277
RDCC-TED-BiLSTM 85.53 1.072 78.00 70.00 1,965,861
Proposed DCCB 90.01 1.055 81.00 85.00 12,055,045

(a) (b)

Fig. 2: The confusion matrix results. (a) The RDCC-TED Model. (b) The proposed DCCB Model.

while providing a large receptive field. However, the benefit
of the RDCC block is more suitable for purely sequential data
like text and audio but less impactful for voxelized point cloud
data. Though the number of parameters increases for models
with DCC layers, their performance in terms of generalization
is incredible for voxelized point cloud data. This is why the
models that utilize them have a better accuracy and confusion
ratio for often confused activities. The proposed DCCB model
considers the long-term dependencies by using the BiLSTM
layers as well as solving the vanishing gradient problem which
contributes to its better generalization and robustness.

Prediction Error Analysis: As observed in confusion ma-
trices shown in Fig. 2 (a) and 2 (b), the individual class
accuracy predicted by the two models we have selected shows
the significance of dilated convolutions. As observed in Fig.
2 (a) the RDCC-TED model which has the lowest parameters
and accuracy as reported in Table I has the worst confusion
ratio for jumping and Jumping jacks. A similar reasoning can
be applied to the other models whose confusion matrices have

not been shown because of lack of space.
Generally, though the proposed DCCB model exhibits a

comparatively similar accuracy with the RadHAR [6] that
proposed the use of BiLSTM and time-distributed CNN, its
generalizability and therefore balanced robustness for all activ-
ities is commendable.

IV. CONCLUSION

In this paper, we investigated the use of dilated causal convo-
lutions in combination with other deep learning techniques like
residual blocks, transformer encoders (TED), and bidirectional
long-short-term memory (BiLSTM) to solve the robustness and
computational efficiency problem. We subsequently proposed
the DCCB model that consists of dilated causal convolution
(DCC) layers and BiLSTM layers. The proposed DCCB model
is robust for all considered activities and computationally
efficient according to our experiments. However, it is worth
exploring multi-view point cloud representations for activity
recognition.
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