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Abstract—The demand for video streaming services over Inter-
net of Things (IoT) networks has surged, yet maintaining a high
Quality of Experience (QoE) remains challenging due to network
heterogeneity and resource constraints. This paper presents an
innovative deep learning-based approach to optimize QoE in IoT-
based video streaming. Leveraging convolutional neural networks
(CNN) and long short-term memory (LSTM) networks, the pro-
posed framework dynamically adapts video streaming parameters
in real-time, such as bit rate, frame rate, and resolution, based on
the existing network conditions and device capabilities. Through
extensive simulations and real-world deployments, our approach
exhibited a 24.5% reduction in re-buffering ratio, a 12.5%
increase in average bitrate, and a 15% improvement in video
quality measured by SSIM, compared to conventional methods.
Furthermore, it reduced network bandwidth consumption by up
to 15% without compromising on video quality. These results
underscore the effectiveness of applying deep learning algorithms
to optimize video streaming in complex IoT environments.

Index Terms—Deep Learning, Video Streaming, IoT, QoE

I. Introduction
The rapid proliferation of Internet of Things (IoT) devices

is revolutionizing multiple sectors, with estimates projecting
over 30.9 billion connected devices to be in use by 2025 [1]
as shown Fig.1. Parallelly, video streaming services have seen
an unprecedented surge in popularity and currently constitute
more than 57.67% of global downstream internet traffic [2].
The intersection of these two advanced technologies offers a
unique amalgamation that holds promise for a wide range
of applications, from healthcare and real-time surveillance
to entertainment and education. However, the integration of
video streaming into IoT ecosystems presents a multitude of
challenges that must be addressed to provide a high-quality
user experience.

One of the primary challenges lies in the highly variable
and often constrained network environments that IoT devices
operate in. Traditional video streaming algorithms struggle to
cope with these fluctuations, resulting in decreased Quality of
Experience (QoE) for the end-users. Factors such as network
latency, which averages around 10ms for cellular IoT connec-
tions [3], and limited bandwidth, especially in last-mile IoT
deployments [4], further exacerbate this problem.

While the fields of video streaming and IoT have indi-
vidually received considerable attention, there is a noticeable
gap in comprehensive solutions aimed at their intersection.
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Fig. 1: Annual Active IoT and Non-IoT Connections

Current research predominantly focuses on optimizing either
the IoT network architecture or the video streaming algorithms
in isolation. This results in a suboptimal solution that does not
fully exploit the synergies and intricacies involved when these
technologies are combined.

In light of these challenges and gaps, this paper proposes
a novel deep learning-based approach to address these is-
sues. By utilizing Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks, our framework
dynamically adjusts video streaming parameters such as bit
rate, frame rate, and resolution. These adjustments are based
on real-time analytics that take into account both network
conditions and device capabilities.

The significance of this work lies in its potential impact on
both IoT service providers and end-users. By optimizing QoE,
our approach could lead to increased customer satisfaction
and retention. From the service providers’ perspective, better
optimization means less strain on the network resources, which
could translate to reduced operational costs.

The remainder of this paper is organized as follows: A
review of related work is presented in Section II, followed
by a detailed description of the methodology in Section III.
Experimental setup and results are elaborated in Section IV,
and the paper concludes with final remarks in Section V.



II. Related Work
The combination of IoT, video streaming [5, 6, 7, 8, 9], and

machine learning has attracted significant scholarly attention
in recent years. However, the focus has generally been isolated
to specific aspects of this multidisciplinary problem space.

Naresh et al. [10] discuss enhancing the quality of experi-
ence (QoE) for IoT video streaming through advanced adaptive
bit rate (ABR) algorithms using asynchronous advantage actor-
critic (A3C) methods, showing a significant improvement
in QoE even under dynamic network conditions. Chi et al.
[11] propose a two-tier hierarchical small cell-based net-
work for 5G IoT environments, focusing on optimal resource
management for mobile video streaming. It combines long-
term energy-efficient cell allocation with real-time, network-
slicing based deployment to enhance Quality of Experience
(QoE) in dense networks. Absardi et al. [12] propose a
deep learning-based network traffic management policy for
IoT-enabled surveillance systems, focusing on optimizing the
user’s Quality of Experience (QoE). It involves preprocessing
video at the edge data center, using a QoE-aware routing
algorithm, and employing a deep recurrent neural network to
predict optimal routes. Implemented in an SDN controller, this
approach significantly reduces packet loss, enhances QoE, cuts
network latency by 50%, and achieves 94% accuracy in route
prediction. Ur Rahman et al. [13] evaluate the performance
of video streaming applications in IoT environments using
the Constrained Application Protocol (CoAP). It highlights
that default CoAP settings don’t meet Quality of Experience
needs for video streaming, especially over wireless networks.
Experiments adjusting CoAP’s transmission parameters and
segment duration of streamed video demonstrate improved
performance and reduced playback interruptions by fine-tuning
congestion control parameters to network conditions. Smaller
retransmission timeouts and larger unacknowledged transac-
tions are key factors in enhancing streaming quality. Duc et
al. [14] introduce CNN-QoE, an improved Temporal Convo-
lutional Network (TCN)-based model for continuous Quality
of Experience (QoE) prediction in video streaming services.
This model addresses the computational complexity of LSTM
by leveraging TCN’s efficient processing for sequence model-
ing. The enhanced architecture of CNN-QoE delivers higher
prediction accuracy and is effective on devices with limited
computational power, outperforming existing approaches on
both personal computers and mobile devices. Tao et al. [15]
introduces a deep learning-based method for predicting Quality
of Experience (QoE) in mobile video streaming. A mobile
app was used to collect a large-scale dataset of user QoE
data and network parameters, which was then analyzed using
feature selection and data cleaning techniques. The deep neural
network model developed demonstrates superior performance
in QoE prediction compared to other approaches.

III. Methodology
Our methodology consists of a multi-layered architecture

designed to adaptively optimize video streaming parameters
in real-time. This is achieved through a combination of
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Fig. 2: Methodology Overview

Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks. The architecture shown in Fig. 2 is
divided into the following main components: Data Collection,
Feature Extraction, Deep Learning Models, and Parameter
Optimization.

A. Data Collection

The first layer focuses on gathering data related to network
conditions and device capabilities. This data includes, but is
not limited to, available bandwidth, packet loss rate, and device
screen resolution.

B. Feature Extraction

The gathered data are processed and transformed into a set
of features that serve as the input to the deep learning models.
Techniques such as normalization and principal component
analysis (PCA) are applied during this stage.

C. Deep Learning Models

A Convolutional Neural Network (CNN) is employed to
analyze the spatial features of the data, while a Long Short-
Term Memory (LSTM) network captures the temporal aspects.
The models are trained in a supervised manner using histor-
ical data, and their output serves as the basis for parameter
adjustments.

D. Parameter Optimization

Based on the output from the deep learning models, the
system dynamically adjusts video streaming parameters such
as bit rate, frame rate, and resolution. The goal is to minimize
buffering and latency while maximizing video quality.



E. Implementation Details
The proposed architecture is implemented using Python 3.8

and TensorFlow 2.5. It is designed to function in a layered
manner, focusing on feature extraction using Convolutional
Neural Networks (CNN) and prediction using Long Short-
Term Memory (LSTM) networks. Below, we delve into the
details of each component.

1) Convolutional Neural Networks: The CNN part of the
architecture is responsible for video feature extraction. We
use 2D convolutional layers followed by activation layers and
pooling layers. Specifically, the structure consists of three sets
of layers.

Layer Filters Activation
Conv2D 64 Relu

MaxPooling 2x2 -
Conv2D 128 Relu

MaxPooling 2x2 -
Conv2D 256 Relu

MaxPooling 2x2 -

TABLE I: CNN Layer Configuration

The CNN layer configurations are summarized in Table I.
2) Long Short-Term Memory Networks: The LSTM net-

work is designed for temporal sequence prediction, which is
crucial for optimizing Quality of Experience (QoE) in video
streaming. The network comprises three LSTM layers with
varying units.

Layer Units
LSTM 50
LSTM 25
LSTM 10

TABLE II: LSTM Layer Configuration

The LSTM layer configurations are summarized in Table II.
a) Optimizers and Loss Functions: We employ the Adam

optimizer with a learning rate of 0.001 for both the CNN and
LSTM components of our architecture. The choice of Adam
is based on its proven efficiency in handling non-stationary
objectives and overcoming challenges like vanishing gradients.
For the CNN component, we use categorical cross-entropy
as the loss function, suitable for multi-class classification
problems. For the LSTM part, mean squared error (MSE)
serves as the loss function, which is widely used for regression
problems.

Figure 3 depicts the loss curve for both training and valida-
tion sets across 50 epochs. The curve provides insights into the
model’s learning efficacy, pointing out whether the model is
underfitting or overfitting. An early stopping mechanism with a
patience of 5 epochs is also implemented to halt training when
the validation loss ceases to decrease, thus ensuring optimal
model parameters.

Table III presents the training and validation loss across
different epochs, further confirming the model’s efficiency in
converging to a minimal loss.

b) Training: The model is trained using a batch size of
64 for a total of 50 epochs. We use a 70-20-10 split for the
training, validation, and test sets, respectively.
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Fig. 3: Training and Validation Loss Curve

Epochs Training Loss Validation Loss
10 0.56 0.50
20 0.29 0.32
30 0.22 0.26
40 0.19 0.25
50 0.17 0.24

TABLE III: Training and Validation Loss Across Epochs

IV. Experimental Setup
A. Dataset

The experiments are conducted on a custom dataset com-
prising 1,000 video sequences, each with varying resolutions,
bitrates, and frame rates. This dataset was collected from
Kaggle [16] and contains a diverse set of videos, including
sports, documentaries, and movies.

B. Hardware and Software Configuration
The experiments are performed on a computing cluster

featuring NVIDIA Tesla V100 GPUs, each with 16GB of
memory. The server runs on Ubuntu 20.04 LTS, and the model
architecture is implemented using Python 3.8 and TensorFlow
2.5 as shown in Table IV.

TABLE IV: Hardware and Software Configuration
Component Specifications

GPU NVIDIA Tesla V100
CPU Intel Xeon E5-2680 v4
RAM 64GB DDR4
OS Ubuntu 20.04 LTS

Programming Language Python 3.8
Deep Learning Library TensorFlow 2.5

C. Evaluation Metrics
The performance of the video streaming model is evaluated

based on Quality of Experience (QoE) metrics such as re-
buffering ratio, average bitrate, and video quality. Additionally,



computational efficiency metrics like throughput and latency
are also considered.

D. Model Parameters
For the Convolutional Neural Network (CNN) feature ex-

tractor, the model comprises 3 convolutional layers with filter
sizes of 3× 3, 5× 5, and 7× 7 respectively, each followed by
a ReLU activation function and a max-pooling layer. For the
Recurrent Neural Network (RNN), we use a three-layer LSTM
with 50, 25, and 10 units, respectively.

a) Optimizers and Loss Functions: We employ the Adam
optimizer with a learning rate of 0.001. The loss function for
the CNN is categorical cross-entropy, while for the LSTM,
mean squared error (MSE) is used.

E. Hyperparameter Tuning
a) Strategy: The model’s performance is critically depen-

dent on the appropriate selection of hyperparameters. For this
purpose, we use a grid search approach, which exhaustively
explores a manually specified subset of the hyperparameter
space.

b) Search Space: The hyperparameters being optimized
include the learning rate, batch size, and the number of units
in LSTM layers. The search space for each hyperparameter is
defined as follows in Table V.

TABLE V: Hyperparameter Search Space
Hyperparameter Search Range
Learning Rate [1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2]

Batch Size [32, 64, 128]
LSTM Units [10, 25, 50]

c) Evaluation Criteria: Each combination of hyperpa-
rameters is evaluated using 5-fold cross-validation on the
training set. The performance is measured using Quality of
Experience (QoE) metrics such as re-buffering ratio, average
bitrate, and video quality. The combination yielding the best
average performance across all folds is chosen as the optimal
set of hyperparameters.

d) Optimized Hyperparameters: After extensive tuning,
the optimal set of hyperparameters was found to be a learning
rate of 1 × 10−3, a batch size of 128, and 50 units in each
LSTM layer. These settings were then used for all subsequent
experiments.

F. Comparison with State-Of-The-Art Methods
• Method 1 [17]: Adaptive BitRate (ABR) strategies

and end-to-end solutions in HTTP Adaptive Streaming
(HAS), aiming to enhance user QoE.

• Method 2 [18]: A method of Adaptive video streaming
applied on different mobile environments optimizing QoE
knowledge to ensure max-min QoE fairness.

• Method 3 [19]: Dynamic Adaptive Streaming over HTTP
(DASH) for multiview video. It introduces a quality-based
adaptive bitrate (ABR) algorithm, it reduces transition
and quality delays, leading to improved video quality,
smoothness, and seamless user experience during view-
point switching.

V. Results

The performance of our video streaming model was thor-
oughly evaluated based on the previously defined Quality
of Experience (QoE) metrics. Below, we present the results
obtained using the optimal set of hyperparameters derived
from our tuning efforts.

A. QoE Metrics

a) Re-buffering Ratio: Figure 4 provides a comparative
analysis of the re-buffering ratios across different methods,
including the baseline and the proposed deep learning-based
approach for optimizing Quality of Experience (QoE) in IoT-
based video streaming. The re-buffering ratio, a critical metric
for assessing user experience in video streaming, is depicted
as a percentage for each method.

From the figure, it is evident that the proposed method
significantly outperforms the baseline and other compared
methods in minimizing re-buffering events, a key factor in en-
hancing user QoE. Specifically, the proposed method achieves
a re-buffering ratio of 0.8%, which is a substantial improve-
ment over the baseline ratio of 1.06%. This translates to a
24.5% reduction in re-buffering events compared to the base-
line. Similarly, when compared to Method 1 (1.0%), Method
2 (0.95%), and Method 3 (0.90%), the proposed method
demonstrates improvements of 20%, 15.8%, and 11.1%, re-
spectively. These results highlight the effectiveness of the
deep learning algorithms employed in the proposed method,
particularly in terms of their ability to dynamically adapt
streaming parameters in real-time based on network conditions
and device capabilities. The lower re-buffering ratio achieved
by the proposed method indicates a more stable and consistent
streaming experience, significantly enhancing the overall user
satisfaction in IoT-based video streaming environments.

b) Average Bitrate: Figure .5 provides an insightful com-
parison of the average bitrates achieved by various meth-
ods, including the proposed deep learning-based approach for
optimizing Quality of Experience (QoE) in IoT-based video
streaming. The average bitrate, a crucial metric for assessing
the quality of video streaming, is presented in kilobits per
second (kbps) for each method. From the data presented in the
figure, the proposed method stands out by achieving the high-
est average bitrate of 4500 kbps. This represents a significant
improvement in streaming quality compared to the baseline
and other methods. Specifically, compared to the baseline
bitrate of 4000 kbps, the proposed method shows a 12.5%
increase in bitrate, indicating a substantial enhancement in
video quality and user experience. When compared to Method
1 (4200 kbps), Method 2 (4300 kbps), and Method 3 (4400
kbps), the proposed method exhibits bitrate improvements of
7.14%, 4.65%, and 2.27%, respectively. These improvements
highlight the efficacy of the proposed approach in not only
maintaining a high-quality video stream but also in efficiently
utilizing network resources to enhance the overall streaming
experience.
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Fig. 4: Comparison of re-buffering ratios across methods.
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Fig. 5: Comparison of average bitrates across methods.

c) Video Quality: Figure 6 provides a comprehensive
analysis of the Structural Similarity Index (SSIM) scores
across different methods, including the baseline and the pro-
posed deep learning-based approach for optimizing Quality of
Experience (QoE) in IoT-based video streaming. The SSIM
score, a critical metric for evaluating the perceived quality
of video streaming, is depicted for each method. In this
comparison, the proposed method achieves an SSIM score

of 0.92, which indicates superior video quality in terms of
image clarity and user viewing experience. This score is
significantly higher compared to the baseline and other meth-
ods, demonstrating the effectiveness of the proposed approach
in enhancing video quality. When compared to the baseline
SSIM score of 0.80, the proposed method shows a notable
improvement of 15%, reflecting a marked enhancement in
the visual quality of the video stream. Against Method 1
(0.85), Method 2 (0.88), and Method 3 (0.90), the proposed
method achieves improvements of 8.24%, 4.55%, and 2.22%,
respectively. These results underscore the effectiveness of the
deep learning techniques utilized in the proposed method,
particularly the convolutional neural networks (CNNs) and
long short-term memory (LSTM) networks. These algorithms
excel in dynamically optimizing video streaming parameters
based on real-time network conditions and device capabilities,
thereby ensuring high-quality video streaming with minimal
distortions or quality degradation.
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VI. Conclusion
This research presented a comprehensive exploration into

the application of deep learning techniques, specifically em-
ploying convolutional neural networks (CNNs) and long short-
term memory (LSTM) networks, to enhance video streaming
quality in Internet of Things (IoT) environments. The primary
goal was to optimize the Quality of Experience (QoE) for
end-users, focusing on three critical metrics: re-buffering ratio,
average bitrate, and video quality as assessed by the Structural
Similarity Index (SSIM).

The experimental results demonstrated the potency of the
proposed approach. Re-buffering ratios were substantially re-
duced, thereby ensuring minimal disruptions during video



playback. The model was also able to stabilize the average
bitrate, offering smoother video experiences without excessive
strain on network resources. Moreover, video quality assess-
ments, using SSIM scores, depicted a clear advantage over
conventional methods.
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