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Abstract—Supervised algorithms allow clinical texts to be
automatically organized based on their content. In this sense,
supervised algorithm predictions must be accurate and confident
to be used in clinical practice, considering the complex patterns in
the texts. In this aspect, sequences of character strings known as
regular expressions offer an alternative closer to natural language
to represent complex patterns from texts, which can be auto-
matically generated using sequence alignment algorithms. This
paper proposes a hybrid method that combines the most confident
predictions of a supervised algorithm and regular expressions for
clinical text classification. Our method uses regular expressions
to classify clinical texts when the predictions of a supervised
algorithm are not confident in terms of predictive probability. To
evaluate our method, we used three datasets with information
on smoking and obesity status across supervised algorithms:
Support Vector Machine (SVM), Random Forest (RF), Naive
Bayes (NB), and Bidirectional Encoder Representations from
Transformers (BERT). The classification results indicate that
the proposed method, on average, improved the performance of
supervised algorithms on all performance metrics by up to 5%.
Thus, we demonstrated the ability of our method to generate
regular expressions representative of clinical texts as support in
cases when the predictions of the supervised algorithms were not
confident.

Index Terms—Clinical text classification, probability predic-
tion, regular expressions

I. INTRODUCTION

Text classification is a valuable tool to automatically or-
ganize a large amount of digital information into categories
[1]. Organizing scientific documents or unstructured textual
information from clinical texts is possible in the biomedical
area using supervised algorithms.

In text classification, a supervised learning algorithm is
used, either of traditional use such as Support Vector Ma-
chine (SVM), Random Forest (RF), Naive Bayes (NB), or
more recently based on neural networks, such as Bidirec-
tional Encoder Representations from Transformers (BERT)
[2]. However, regardless of the algorithm used, predictions
must be accurate and confident in the clinical area [3]. In
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this sense, one of the tools available to researchers for text
classification is regular expressions, which can be adapted to
different domains, allowing complex patterns to be captured
from texts [4].

Regular expressions correspond to a set of characters and
metacharacters without a literal meaning within the expression
to define search patterns in texts [5]. It is possible to use regu-
lar expressions in text pre-processing, information extraction,
and classification tasks to a lesser extent [6]–[8]. However,
one of the main challenges in using regular expressions is the
automatic generation from training texts. For example, Bui
and Zeng-Treitler propose a method that allows the generation
of regular expressions automatically from labeled texts by
using sequence alignment algorithms [6]. Thus, sequences of
common words are extracted from the texts to generate regular
expressions for each class of the problem. On the other hand,
Li et al. generate regular expressions by identifying keywords
from the texts using attention mechanisms [8]. Subsequently,
keywords, metacharacters, and Boolean operators (e.g., NOT,
OR, and AND) are combined to generate matching rules.

On the other hand, an important aspect of classification
tasks is to improve the performance of supervised algorithms,
especially in problems with unbalanced classes or scenarios
where the class of interest must be improved [9], [10]. Thus,
maximizing some metric of interest (e.g., the harmonic mean
between precision and recall) makes it possible to adjust the
predictive decision threshold for supervised algorithms. This is
particularly important in the clinical domain, where supervised
learning algorithms must be accurate in their predictions to be
considered decision-support tools [11].

Given the above, this paper proposes a method that com-
bines the most confident predictions of a supervised algorithm
and regular expressions for clinical classification tasks. In
this sense, the two main contributions of this work focus on
constructing a feature space based on the automatic genera-
tion of regular expressions from clinical texts and a hybrid
method that selectively combines a supervised algorithm and
such regular expressions to classify texts. The most confident
predictions satisfy a probability threshold calculated for each



supervised algorithm from an additional validation set. We
hypothesize that if only the most confident predictions of the
algorithms in terms of predictive probability are used, clinical
text classification could be more accurate. On the other hand,
when the algorithms’ predictions are not confident, we use
the most reliable regular expressions automatically generated
from the labeled texts to assign a class. Classification results
indicate that, on average, our method improved classification
tasks by up to 5%.

The paper is organized as follows. Section II describes
the datasets and the proposed hybrid method for clinical
text classification tasks. Section III shows the classification
results of the proposed method. Finally, section IV shows the
conclusions of this paper and presents future work.

II. MATERIALS AND METHODS

A. Datasets and pre-processing

To evaluate our proposed method, we collected clinical
texts in Spanish with information on smoking habits and
obesity from patients at Hospital Guillermo Grant Benavente
in Concepción, Chile [4]. Afterward, Biomedical Engineers
manually labeled all Datasets (DSs) for three classification
problems: smoking status, obesity status, and obesity types.
After the manual labeling process, annotators were asked for
keywords for each classification problem, and their agreement
level in terms of the Kappa index (k) was measured [12].
Finally, each text was pre-processed, converting the texts to
lowercase, removing excessive spacing, and extracting tokens
(e.g., words, numbers, punctuation). Table I briefly describes
the classification tasks of this work.

TABLE I
DESCRIPTION OF THE DATASETS

Dataset Classes Examples Keywords k
SMOKING DS Positive

(smoker),
negative

1087 smok*,
tobac*,
cigar*,
pack*

0.86

OBESITY DS Positive
(obesity),
negative

1161 obes*,
BMI,
over-
weight,
normal
weight,
weight

0.98

OBESITY TYPES DS Moderate,
severe,
morbid

909 obes*,
BMI

0.97

k >0.81 in all cases (almost perfect agreement).
* symbol indicates the root of a given word.

B. Classification method

Our classification method combines the most confident
predictions of a supervised algorithm and regular expressions
(see Fig. 1). During the training stage, our method creates
a feature space based on regular expressions from labeled
texts. Additionally, we trained a supervised algorithm on
the same labeled texts. Later, during the prediction stage,

if the supervised algorithm is not confident, we use regular
expressions to assign a label to a test text.

C. Regular expressions

Our method creates a feature space based on regular ex-
pressions in the following four stages (see Fig. 2). First,
hierarchical clustering is applied to the texts to find groups
of similar words, considering the Levenshtein distance as a
metric [13]. Subsequently, the words in each group are aligned
to find a representative pattern, combining common letters and
metacharacters. Second, each similar word is replaced by the
representative pattern. Additionally, the numbers in the DS are
replaced by a representative pattern (e.g., \d+). In this way, in
the third stage, it is possible to extract sequences of common
words between each pair of text for each class of the DS.
Finally, in the fourth stage, white-space metacharacters (e.g.,
[\s]*) are added to the word sequences to produce regular
expressions. Once the regular expressions have been generated
in a supervised manner from the labeled texts, it is possible
to use them for classification tasks. In this sense, regular
expressions that do not contain keywords for a given classifi-
cation problem are filtered out using the information provided
during the annotation process (see Table I). In the example
in Fig. 2, it was possible to generate the regular expression
\d+[\s]*(?:\w)?cigar(?:\w)? from the labeled texts.

D. Classifier

Our method combines the most confident predictions of a
supervised learning algorithm regarding predictive probability
and regular expressions to classify a text.

During the training stage, the supervised algorithm and
the regular expressions independently use the same set of
labeled texts to construct either the decision function or the
feature space. At this stage, the supervised algorithm uses an
additional validation set to adjust the hyperparameters and
find the best confidence threshold (PTHR). This threshold
is selected by iterating over a set of predicted probabilities
to construct precision-recall curves, selecting the point that
maximizes the F1-value (f1), calculated on the harmonic mean
between precision and recall [14], [15]. In the case of the
binary problems, the f1 associated with the positive class
was maximized, while in the multi-class problem, a threshold
was chosen for each category. On the other hand, during the
prediction stage (see Algorithm 1), our method classifies a
text according to the following three possible scenarios. If
the probability prediction of a given supervised algorithm is
greater than or equal to PTHR, then the class of this algorithm
is assigned to the text. Otherwise, all regular expressions are
applied to the text to assign the class of the expression with
the highest precision value (pr). This value is calculated for
all regular expressions in the training set according to:

pr =
TP

TP + FP
, (1)

where TP occurs when the class of the regular expression
matches the class of the training text, while FP occurs when



Fig. 1. General diagram of the proposed method.

Fig. 2. Proposed method to create a feature space based on regular expres-
sions.

the classes do not match. Note that in Algorithm 1, L : R→ Y
maps a regular expression r ∈ R to a class ŷ ∈ Y , ŷ = L(r),
Φ : R → P maps a regular expression r ∈ R to a precision
value pr ∈ P , pr = Φ(r), and ϵ allows selecting the regular
expression r that contains the most tokens, ϵ = 10−4. Finally,
if no regular expression matches a text, the class of the
supervised algorithm is assigned.

III. RESULTS

Supervised algorithms based on SVM, RF, NB, and BERT
were considered to assess our classification method. For the
training of SVM, RF, and NB, the texts were represented
by Term Frequency & Inverse Document Frequency (TfIdf),
and the hyperparameters were tuned on the validation set,
as indicated in Table II [16]. On the other hand, in the
case of BERT, the hyperparameters suggested in the state-

Algorithm 1: Prediction

1 I. Input:
2 R: set of labeled regular expressions
3 f : decision function of a trained classifier
4 XT : test set
5 PTHR: probability threshold
6 p: predictive probability of a supervised algorithm
7 II. Initialization:
8 yT ← ∅
9 III. Algorithm:

10 for xt in XT do
11 if p ≥ PTHR then
12 ŷ ← f(xt)
13 end
14 else
15 R′ ← ∅
16 for r in R do
17 if r matches xt then
18 R′ ← R′ ∪ r
19 end
20 end
21 if |R′| > 0 then
22 ŷ ← L(argmaxr∈R′{Φ(r) + ϵ|r|})
23 end
24 else
25 ŷ ← f(xt)
26 end
27 end
28 yT ← yT ∪ ŷ
29 end
30 IV. Output: yT predicted labels on XT

of-the-art for text classification problems were used [17],
[18]. Additionally, the Monte Carlo Dropout technique was
considered to obtain a probabilistic estimation in the neural
network-based algorithm, while in the case of SVM, the Platt
scaling method was used [17], [19]. In all cases, the training
and test sets were obtained by 5-cross-fold-validation, while
the validation set was selected from 20% of the training set.



TABLE II
HYPERPARAMETERS USED TO FINE-TUNE CLASSIFIERS.

Classifier Hyperparameter Values
SVM kernel RBF, Linear*

C 100*, 101, 102, 103

RF Criterion Entropy, Gini*
Estimators 101, 102, 5× 102*, 103

NB α 0, 0.25, 0.75, 1*
BERT Epochs 4

Batch size 8
Dropout 0.2
Optimizer Adam
Learning rate 2−5

∗ symbol indicates the hyperparameter used after fine-tuning classifiers in
most cases.

TABLE III
AVERAGE CLASSIFICATION RESULTS.

SMOKING OBESITY OBESITY TYPES
Classifier Type DS DS DS

acc (%) f1 (%) acc (%) f1 (%) acc (%) f1 (%)
SVM Base 84.08 84.06 95.52 95.49 79.65 79.01

+RegExs 85.37 85.10 96.73 96.67 86.02 85.74
∆ 1.29 1.04 1.21 1.18 6.37 6.73

RF Base 83.99 84.01 95.95 95.97 83.72 82.49
+RegExs 85.55 85.42 96.81 96.80 91.09 90.63
∆ 1.56 1.41 0.86 0.83 7.37 8.14

NB Base 75.62 75.65 86.65 86.47 73.37 72.91
+RegExs 80.59 80.19 90.61 90.15 75.90 75.21
∆ 4.97 4.54 3.96 3.68 2.53 2.30

BERT Base 86.66 86.66 96.21 96.22 86.79 86.00
+RegExs 86.75 86.56 96.38 96.35 91.41 91.21
∆ 0.09 -0.1 0.17 0.13 4.62 5.21

∆ 1.98 1.72 1.55 1.46 5.22 5.59

Bold values indicate better performance in the corresponding DS.
∆ indicates the difference between our proposed method and a respective
base classifier.

Thus, the Accuracy (acc) and f1 metrics were averaged [20]:

acc =
TP + TN

TP + FP + TN + FN
, (2)

f1 =
2TP

2TP + FP + FN
, (3)

where TP and TN correspond to the correct positive and
negative predictive values, while FP and FN correspond to
the positive and negative predictive errors.

Table III shows the performance of the supervised al-
gorithms (base) and our proposed method (+RegExs). It is
possible to observe that, in most cases, our method improved
the performance of the classifiers on all performance metrics
(∆ > 0), especially on the OBESITY TYPES dataset. More-
over, in most cases, the supervised algorithm based on BERT
obtained the best performance when combined with regular
expressions.

Fig. 3 shows the classifiers’ performance on the valida-
tion set at different probability predictions in the OBESITY
TYPES DS. It is noticeable that BERT performed better than

the other supervised algorithms. Moreover, it is possible to
observe a peak PTHR that decreases towards the end of the
respective curve.

Fig. 3. Performance (weighted average f1 %) of the supervised classifiers on
the validation set at different probability thresholds in the OBESITY TYPES
DS.

Fig. 4 shows the distribution of the predictive probabilities
for each classification algorithm in the OBESITY TYPES
DS. It is possible to observe that when the classifier is not
confident, i.e., PTHR < 50%, the regular expressions assign
a class to the test text (highlighted in red).

Fig. 5 shows the distribution of the precision values of
the regular expressions for each classification algorithm in
the OBESITY TYPES DS. It is possible to observe that the
precision values of the regular expressions are concentrated on
the maximum values, thus generating confident expressions for
the classification tasks.

IV. CONCLUSION

This work proposed a hybrid method for clinical text
classification based on the most confident predictions of a
supervised algorithm and regular expressions. Regular ex-
pressions are automatically generated for each class of the
problem, allowing for class prediction when a given supervised
algorithm is not confident.

The proposed method is a type of ensemble learning by
combining two classifiers. In this sense, a set of supervised
learning algorithms could be combined according to the con-
fidence level in the predictions. However, unlike other super-
vised algorithms, incorporating regular expressions allows the
construction of patterns closer to natural language, facilitating
their interpretability.



Fig. 4. Example of the predicted probability distribution for each supervised
algorithm in the OBESITY TYPES DS. For each case, the use of regular
expressions is indicated in red.

Fig. 5. Example of the precision distribution of the regular expressions for
each supervised algorithm in the OBESITY TYPES DS.

The classification results (see Table III) indicate that our
method improved the performance of the supervised algo-
rithms by up to 5% in terms of acc and f1, especially on
the OBESITY TYPES DS. These results validate the regular
expressions’ ability to represent complex patterns of clinical
texts, especially when numerical attributes are present (e.g.,
BMI).

On the other hand, regular expressions allowed the pre-
dictions of the supervised algorithms to be more confident
(see Fig. 3 and 4). On average, predictions were only consid-
ered when PTHR ≥ 60%, thus avoiding maximum entropy
problems. In this sense, the regular expressions achieved
high precision values (see Fig. 5), allowing accurate class
predictions when the supervised algorithms were not confident,
which occurred, on average, between 16% to 50% of the cases.

In future work, we plan to further extend this work to other
domains and evaluate other performance metrics to select the
best predictive threshold, including entropy.
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