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Abstract—In modern internet communication, social media
platforms have emerged as indispensable tools for self-expression,
social engagement, and content distribution. Nevertheless, exist-
ing research on predicting social media popularity tends to over-
look the complex interactions between different characteristics
of user profiles, such as geolocation and account type, and post
metadata, such as postdate and hashtags. This paper addresses
this gap by investigating the factors derived from user profiles
and post metadata contributing to content popularity within
social media environments, with a specific emphasis on image-
sharing. Utilizing a comprehensive dataset, we employ artificial
intelligence-based data analytics techniques to uncover patterns,
correlations, and predictive models, thereby providing a detailed
insight into the dynamics of popularity within these online spaces.

Index Terms—post popularity prediction, social media, regres-
sion task, community

I. INTRODUCTION

In the digital information-sharing landscape, social media
platforms serve as pervasive channels for self-expression,
interpersonal connection, and global content dissemination
[1]. The exponential growth in content on these platforms
transforms them into rich data sources [2], [3], creating an
opportunity to investigate the determinants of post popularity.
Understanding the dynamics governing the success of such
content is crucial for content creators, social media platforms,
and marketers. Engagement metrics like likes, comments,
shares, and view count are vital indicators of content resonance
and impact, making predicting and enhancing engagement a
central concern in the digital age.

The study of predicting post popularity has received signif-
icant attention in social media analytics, focusing on various
content types such as text [4]—-[7], videos [8]-[10], and images
[11]-[13]. While progress has been made in understanding
the dynamics of post popularity, the nuances associated with
image-based content remain a challenging area that requires
further investigation, especially with the pervasive growth of
platforms like Flickr, Instagram, and Snapchat, where visual
communication is paramount.

Pioneering work by Khosla et al. [14] explored visual
content factors, such as color, gradients, deep learning features,
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and objects present, as determinants of image popularity.
Works like [11] and [15] demonstrated the efficacy of in-
corporating visual aesthetics to enhance prediction accuracy.
Massip et al. [12] extended the investigation by incorporating
category-specific information, offering insights into how visual
content across specific categories influences user engagement.
Simultaneously, studies such as [16] and [17] delved into
caption information.

Understanding the role of user profile information, defining
user-related features (e.g., geolocation and account type), in
image popularity prediction has gained prominence. Users
with a substantial following are intuitively more likely to
have their posts seen by a larger audience, potentially in-
creasing visibility and popularity. Metadata, including post
date and hashtag information, plays a crucial role in image
understanding, providing context and details about the content.
Previous studies have incorporated metadata with user profile
information into predictive models [18], [19], yet a gap exists
in systematically understanding each component.

This paper addresses the identified gap through a data-driven
approach, investigating the relationship between user profile
attributes and metadata associated with image-based posts. By
exploring different strategies, ranging from feature engineering
to model learning, our objective is to uncover the factors
influencing the success of visual content in capturing and
resonating with an online audience. Specifically, we explore
various methods to extract and transform variables related to
users and metadata from raw data. Subsequently, we utilize
these transformed variables as input for different learning
algorithms to not only identify the best predictive models
but also comprehend the impact of each component and
their interrelationships. Our findings provide valuable insights
to guidance social media platforms in refining algorithms
and interface design, thereby enhancing user experiences and
fostering meaningful engagement.

The subsequent sections are organized as follows: Section II
outlines the dataset used, detailing the collection process and
key features. Section III presents the methodology, describing
selected machine learning algorithms and their motivation.



TABLE I: A summary of feature attributes (sorted by the name
ascending).

Feature attribute | Description

alltags Number of tags from users

canbuypro Users can buy pro members or not

category First category of posts with 11 different classes
concept Post concept with 502 different classes
geoaccuracy The level of accuracy of location information
ispro Pro member users or not

latitude Latitude that ranges from -90 to 90

longitude Longitude that ranges from -180 to 180
photo-count Number of photos uploaded by the user
postdate Time when the post was published
subcategory Subcategory of posts with 75 different classes
timezone-id User’s time zone ID

timezone-offset User’s time zone
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Fig. 1: Distribution of normalized engagements in the collected
data.

Section IV discusses experimental results and implications,
providing a comprehensive analysis. Finally, Section V con-
cludes the paper by summarizing key contributions, discussing
limitations, and suggesting directions for future research in this
evolving domain.

II. DATASET

We collected 11,771 posts from 2,926 user accounts on the
image-sharing social media platform Flickr!, where user en-
gagement, representing popularity, is measured by the number
of views. Because we focus on user profiles and metadata
information, 13 feature attributes were selected as predictor
variables, as summarized in Table I. Since the number of views
on each post has varying values, log normalization is utilized,
which is defined as:

y=logs % + 1, (M

where y is the normalized engagement value, ¢ is the view
count of a photo considered as engagement, and d is the
number of days since the image was posted. The distribution
of normalized engagement data is presented in Fig. 1.
III. METHODOLOGY

A. Feature Engineering

Feature engineering is essential for deriving meaningful
insights from raw data and optimizing machine learning model

Thttps://www.flickr.com/

performance by selecting optimal features. Mainly, the diver-
sity in data types and model assumptions necessitates tailored
approaches.

To handle categorical data, we employ two methods: One-
Hot Encoding, transforming categorical variables into binary
vectors (0Os and 1s), and Label Encoding, assigning a unique
integer to each category. Encoded variables are day, month,
and time extracted from the postdate attribute and attributes
such as category, subcategory, concept, ispro, canbuypro,
and timezone-id. Meanwhile, longitude and latitude in photo
location data are processed using their values directly as
features or by clustering. K-means clustering is utilized in this
study and the optimal number of clusters (k) is determined
through the elbow method.

To address the high dimensionality resulting from One-
Hot Encoding, we explore the application of PCA (Principal
Component Analysis) [20]. PCA is a popular method that
effectively reduces data dimensionality while preserving most
of its variability [21]. Specifically, the number of feature
dimensions obtained from the results of one-hot encoding is
614, whereas, after reduction by PCA, it becomes 95.

B. Training Process

Four regression-based methods are utilized for this task:
Support Vector Regression [22], Random Forest Regressor
[23], Category Boosting [24], and Artificial Neural Network
(ANN) [25]. Each method is optimized to ensure a fair
comparison.

1) Support Vector Regression: Support Vector Regression
(SVR) is a supervised learning algorithm used for regression
tasks, aiming to find a hyperplane that best represents the
relationship between the input features and the target variable
while allowing for a certain tolerance in prediction errors.
Unlike traditional regression models that minimize errors
across all data points, SVR focuses on fitting the data within
a specified margin, as determined by support vectors.

Let {(x1,y1), (X2,%2),..., (Xn,yn)} denote the training
data, where x; is the input vector and y; is the correspond-
ing output. The goal is to find a function f(x) satisfying
|f(x;) — y;| < e for all training examples while maximizing
the margin, where e represents the acceptable error. The SVR
formulation involves optimizing a cost function defined as:

: 1 .
minyp e, (5 [W]* + CZEL (& + €7)), 6)

subject to the constraints:

Yi—W-o(x;) —b< e+, 3)
w-p(x;) +b—y; < e+ & and )
£.65>0 fori=1,..., N. (5)

Here, w represents the weight vector, b is the bias term, ¢(-)
denotes the mapping function to a higher-dimensional space,
and &; and & are slack variables.



TABLE II: Hyperparameter settings used for model training.

Scenario
Method Enc Enc-Clust OHE OHE-PCA Cat
kernel rbf rbf rbf rbf -
C 0.1 1 10 10 -
SVR ¢ 0.1 0.1 1 0.2 ;
¥ 0.1 1 0.01 0.1 -
n estimators 100 300 150 50 -
max depth 20 30 50 40 -
RFR min samples leaf 1 1 1 1 -
min samples split 2 2 2 7 -
max features 1 None 1 1 -
learning rate 0.05 0.05 0.1 0.05 0.1
CatBoost depth 10 10 8 10 10
iterations 500 500 700 500 600
L2 leaf reg 5 1 1 0.5 5
solver adam sgd adam adam -
hidden layer sizes (30, 20, 10, 5) (30, 20, 10) (30, 20, 10) (20, 10) -
MLP activation function tanh tanh tanh tanh -
learning rate constant constant constant constant -
a 0.1 0.01 1 5 -

2) Random Forest Regressor: Random Forest (RF) is an
ensemble learning method within the family of decision tree-
based models. The key idea behind RF is to build decision
trees during training and aggregate the average prediction (for
regression tasks) or the mode prediction (for classification
tasks) from the individual trees. Let 7" represent the number
of trees in the forest, and f;(x) denote the prediction made
by the #-th tree given input features x. In our task, which is a
regression problem, the overall prediction f(x) is the average
of predictions from all individual trees:

=5

3) Category Boosting: Category Boosting (CatBoost) is a
machine learning algorithm designed explicitly for gradient
boosting on decision trees. The general idea is to build an
ensemble of decision trees that minimizes the mean squared
error while efficiently handling categorical features. The over-
all formulation involves finding a set of weak learners f; such
that the following objective function is minimized:

£ = 5~ S A0 + B0, )

57 fi(x). (6)

where Q(f;) is a regularization term that penalizes complex
trees to avoid overfitting. The training process involves itera-
tively adding trees to the model, each time fitting the negative
gradient of the loss function concerning the current model
predictions. The process continues until a predefined number
of trees are added or until convergence is achieved.

4) Multi-layer Perceptron: A Multi-layer Perceptron
(MLP) is an artificial neural network that can be used for
classification and regression tasks. The architecture of an MLP
consists of an input layer, one or more hidden layers, and an
output layer. Each layer contains multiple nodes or neurons,
and connections between these nodes have associated weights.

Consider an MLP with L layers, denoting the weights and
biases of layer [ as W' and b!, respectively. The output of layer

| after applying the activation function ¢! is represented as a'.

The forward pass to predict the output for an input vector X,
denoted as f(x), can be expressed as:

f(x) = (W=t +0h. (8)

During training, the weights and biases are updated through
backpropagation and gradient descent to minimize the loss.

C. Predicting Popularity Score

The primary objective of this step is to predict the popularity
score of the input data. Utilizing the optimized trained model
described in Section III-B, the prediction is performed on
the input data using features extracted through the approach
detailed in Section III-A.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we begin by outlining the experimental
settings. Subsequently, we introduce the chosen evaluation
metrics used to assess the performance of the experiments.
Following this, we present a comprehensive explanation of the
scenarios employed in the study and detailed corresponding
results obtained from each scenario.

A. Settings

We conducted our experiments on a personal computer
with an Intel i7-9750 CPU, 16GB RAM, and an NVIDIA
GT420 GPU. The dataset was split into two sets: 70% for
training and the remaining portion for testing. Exploration of
the hyperparameter space was achieved using grid search. The
hyperparameters for each method are presented in Table II.

Specifically, in Support Vector Regression (SVR), the hyper-
parameters include the kernel function, C, ¢, and . Here, C' is
the regularization parameter controlling the trade-off between
a smooth decision boundary and fitting the training data, €
represents the margin of tolerance for errors, and -y defines
how far the influence of a single training example reaches.
For the Random Forest Regression (RFR), the optimized
hyperparameters include the number of trees in the forest (n
estimators), the maximum depth of the tree, the minimum
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Fig. 2: Model performance on

number of samples required to be at a leaf node, the minimum
number of samples required to split an internal node, and
the number of features to consider when looking for the best
split. Meanwhile, hyperparameters for the CatBoost regressor
encompass the depth of the trees, the number of boosting
iterations (trees) to be run, and the L2 regularization term
on weights that helps prevent overfitting. For the Multilayer
Perceptron (MLP) regressor, the hyperparameters consist of
the optimization algorithm (solver), the number of neurons in
each hidden layer (hidden layer sizes), the activation function
for the hidden layers, the step size in updating the weights dur-
ing training (learning rate), and the L2 penalty (regularization
term) to prevent overfitting (cv).

B. Evaluation Metrics

To measure the accuracy and generalization capabilities of
the models, key evaluation metrics for regression tasks are
employed: (1) Mean Absolute Error (MAE), which represents
the average absolute difference between the predicted and
actual values; (2) Mean Squared Error (MSE) that measures
the average squared difference between predicted and actual
values; (3) Root Mean Squared Error (RMSE) to provide a
measure of the average magnitude of errors in the original
units of the target variable; and (4) Spearman’s rank correlation
coefficient, often denoted as p (rho) used to evaluate how well
the ranking of predictions aligns with the ranking of actual
values.

C. Experimental Scenarios

Five scenarios have been designed to evaluate the predictive
efficacy of the various feature processing techniques outlined
in Section III-A, utilizing the regression-based methods ex-
plained in Section III-B.

Spearman’s Rho MSE MAL
mSVR 4.24 1.54 2.06 0.5 mSVR 3.58 1.32

RFR 1.92 0.89 1.39 0.81 RFR 2.11 0.95
CatBoost 2.17 0.99
1.91 0.6 MLP 3.88 1.49

(b) Enc-Clust scenario.
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1.45 0.78 RFR 1.91 0.88 1.38 0.81
1.47 0.78 CatBoost 1.85 0.87 1.36 0.82
1.97 0.54 MLP 3.14 1.13 1.77 0.72

(c) OHE scenario.

0
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CatBoost 24 0.99 1.55 0.79

(e) Cat scenario.

different experimental scenarios.

1) Enc: This experiment converts categorical data into
numeric values using the Label Encoding strategy, while
non-categorical data retains its original values. The encoded
attributes are then concatenated with non-categorical attributes
and used as input for the regression model.

2) Enc-Clust: In this experiment, the latitude and longitude
attributes are clustered so that posts with the same area due to
the proximity of latitude and longitude are in the same cluster
category. Categorical data, including the geolocation clusters,
are converted to numeric via Label Encoding, while other
data uses the original values. The encoded attributes are then
combined with non-categorical attributes using concatenation
and used as input for the regression model.

3) OHE: In this experimental scenario, one-Hot Encoding
is applied to convert categorical attributes into binary vectors.
Subsequently, all attributes, including the original numeric
values of latitude and longitude, are concatenated and used
as input for the regression model.

4) OHE-PCA: After obtaining the attribute feature vector
from Section IV-C3, its dimensions are reduced using PCA
before inputting the regressor.

5) Cat: In this scenario, CatBoost is employed as the
regression model. All attributes are used as input without
applying Label Encoding or One-Hot Encoding to convert
categorical data.

D. Results and Discussion

Fig. 2 summarizes the performance of each scenario across
different learning methods. It is evident that both the learn-
ing method and testing scenario significantly influence per-
formance. In other words, no learning method consistently
outperforms others in every experimental scenario. The least
favorable result was observed in the Enc scenario with SVR as
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Fig. 3: Feature importance of each feature (in percentage).

the regressor. Conversely, the best performance was achieved
by CatBoost in the OHE scenario. The differences between
them, based on MSE, MAE, RMSE, and Spearman’s Rho,
are 2.39 (56.37%), 0.67 (43.51%), 0.70 (33.90%), and 0.32
(39.02%), respectively. Notably, CatBoost consistently ranks
within the top two performers in every scenario.

While CatBoost exhibits superior overall performance in
the OHE scenario, its performance in the Enc and Enc-
Clust scenarios remains inferior to RFR across all evaluation
matrices. This underscores that CatBoost’s effectiveness, in
this case, could be better when employing Label Encoding to
convert categorical attributes. Notably, using CatBoost with
categorical attributes directly as input (without conversion
using Label Encoding or One-Hot Encoding) yields the lowest
performance compared to employing Label Encoding or One-
Hot Encoding before utilizing categorical attributes as input
for CatBoost.

Geolocation clustering, encompassing longitude and lati-
tude attributes (cf. Fig. 2(b)), demonstrates a performance
improvement solely in SVR. Specifically, comparing SVR
performance with geolocation attribute clustering (Enc-Clust
scenario) against no geolocation attribute clustering (Enc
scenario), the performance increases by 0.66 (15.57%), 0.22
(14.29%), 0.17 (8.25%), and 0.15 (23.08%) on the MSE,
MAE, RMSE, and Spearman’s Rho evaluation matrices, re-
spectively. When comparing SVR performance against exist-
ing scenarios, superior results were obtained when applied to
features categorized via One-Hot Encoding (OHE scenario).

The utilization of PCA has a substantial impact on MLP
performance, with this method yielding the best performance
compared to other scenarios. The poorest MLP performance
was observed in the Enc-Clust scenario, exhibiting differences
of 0.87 (22.42%) for MSE, 0.26 (17.45%) for MAE, 0.24
(12.18%) for RMSE, and 0.48 (20.59%) for Spearman’s Rho
compared to the best MLP performance. When compared to
employing One-Hot Encoding solely on categorical attributes,
integrating PCA into the framework enhances performance
by 0.13 (4.14%) for MSE, 0.04 (2.26%) for RMSE, and
0.18 (25.00%) for Spearman’s Rho, while MAE decreases
by 0.10 (8.13%). These results indicate that transforming
original features into a new set of unrelated features (principal
components) can be advantageous for MLP, notably reducing

the obtained errors. Further exploration into training MLP with
autoencoders, such as in [26], could be a promising avenue for
future research.

In contrast to MLP, which demonstrated improved perfor-
mance with the application of PCA, RFR experienced a decline
in performance when PCA was applied. In the OHE scenario,
the MSE, MAE, RMSE, and Spearman’s Rho for RFR were
1.91, 0.88, 1.38, and 0.81, respectively. However, these metrics
respectively decreased by 0.63 (24.80%), 0.17 (16.19%), 0.21
(13.21%), and 0.08 (9.87%) with the implementation of PCA.
This result suggests that the One-Hot Encoding technique is
more effective in capturing data patterns for RFR.

To comprehend the impact of each component in user
profiles and post metadata on post popularity, we assess their
contribution to the model’s predictions. This is achieved by
calculating the percentage of the mean decrease in impurity
(or Gini importance) to the total, gauging each feature’s
effectiveness in reducing uncertainty. Fig. 3 illustrates the
feature importance for the two best models in Enc, Enc-Clust,
and OHE scenarios, which are CatBoost and RFR. We do
not analyze the OHE-PCA scenario because PCA has already
transformed the original features into a new set of uncorrelated
features.

Based on Fig. 3, it is evident that tags with hashmarks
(also known as hashtags) play the most crucial role in de-
termining the popularity of posts. Intuitively, hashtags make
posts searchable and facilitate connections with users more
likely to engage with and appreciate the content. The strategic
use of popular or trending hashtags emerges as a critical
strategy for expanding post reach to a broader audience.
Additionally, the consistently top-ranking components across
various scenarios include the content in the image, represented
by concepts, geolocation, and postdate. Understanding and
leveraging these insights can empower content creators and
strategists to optimize their approach, enhancing the overall
visibility and impact of image-based content.

V. CONCLUSION

This study investigates the complex dynamics influencing
the popularity of image-based social media content, empha-
sizing the interaction between user profiles and post metadata.
The findings underscore the crucial role of feature engineering



strategies in determining content popularity. Adopting a data-
driven methodology contributes to a deeper understanding of
the multifaceted factors influencing the success of visual con-
tent on social media platforms. Highlighted by experimental
results showcasing the crucial role of hashtags in shaping post
popularity, it provides valuable insights for content creators
and strategists aiming to optimize their approach. Future
research could extend the analysis to explore more intricate
components of social media posts and incorporate additional
ranking criteria.
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