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Abstract — High-quality data is essential to increase the 

reliability of machine learning-based prediction models. For 

time series data, anomalies significantly reduce the accuracy of 

prediction models. In this paper, we propose a novel time series 

data correction method that converts abnormal values of 

univariate time series data into normal ones. For anomaly 

detection and correction, we utilize the LSTM Autoencoder 

model, where we propose a new weight function that considers 

temporal distance. Through experiments using the open NAB 

data, we show that our proposed method is superior to the recent 

conventional methods. 
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I. INTRODUCTION 

Recently, manufacturing industries have used sensors to 
collect data and generate AI-based models using that data to 
realize particular prediction services. These prediction models 
are used to analyze data from factory equipment to prevent 
emergencies such as fires and malfunctions [1]. However, in 
the process of collecting data through sensors, data anomalies 
may occur in the data for a variety of reasons [2]. Detecting 
and correcting these anomalies is a top priority to increase the 
reliability of the AI-based prediction models [3]. 

In our work, we have used the LSTM Autoencoder model 
to detect and correct anomalies in univariate time series data. 
In terms of correcting the detected anomalies, we propose a 
new correction method that considers the temporal relation of 
the time series data. Basically, anomaly correction is achieved 
by replacing detected anomalies with normal values. The key 
idea is to find a normal data window containing the data 
values best suited for replacement. For this, we propose a new 
similarity formula that has a weighting function that reflects 
temporal distance. To prove the effectiveness of the proposed 
method, we have performed experiments using the open 
Numenta Anomaly Benchmark (NAB) dataset [4]. 

 

II. METHODS 

 After detecting anomalies in the given data, corrections 
must be made. The time series data correction process consists 
of two parts; anomaly detection and data correction;  
following the process, data correction is performed to replace 
the abnormal values with normal values [5].  

1) A normal window is located to replace the anomaly 

window. Here, to find a normal window, we utilize a 

similarity formula with a weight function. 

 

Fig. 1. A process of anomaly detection and correction for time series data 

2) Using the LSTM Autoencoder model, a window 

similar to located one is generated. 

3) The generated normal window replaces the anomaly 

window. 
 

 Fig. 1 illustrates the overall process of the proposed 
correction method.  

 

A. Anomaly Detection 

For anomaly detection on time series data, we have used 
the LSTM Autoencoder model which consists of an encoder 
and a decoder. Basically, the encoder compresses inherent 
features within the sequential data, and the decoder generates 
data similar to real data by using those features. Here, the 
encoder and decoder can contain LSTM networks to learn  
temporal characteristics within time series data. Fig. 2 shows 
the architecture of the LSTM Autoencoder for anomaly 
detection on time series data. 

The object function of the LSTM Autoencoder model is 
defined as follows [6]: 

 argmin x′ ∑  X∈sN
∑ ‖xi − xi

�‖2L
i=1   (1) 

  

 In Eq (1), sN denotes the total values of time series data 
and X is a set of some values defined as a ‘window’. Also, L 
is the number entire value that are in each window, xi is the 
real value and xi

� is the value generated by the Autoencoder. 
The model is trained to minimize the mean squared error(MSE) 
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Fig. 2. LSTM Autoencoder model for anomaly detection on time series data 

of the difference between the input data and the output data. 

 To detect anomalies within given time series data, we 
define an anomaly score function using the error vector. The 
error vector ei � |xi − xi

�|  is assumed to follow a normal 
distribution, and we need to estimate its mean μ  and 
covariance Σ. Then the resulting anomaly score ai is defined 
as Eq. (2): 

 

If the distance between the error vector and the assumed 
data distribution increases, we can consider that there is an 
anomaly; that is, if the anomaly score of a certain window is 
higher than a threshold (�), it is detected as an anomaly. 

Fig. 3 shows an example of anomaly detection using the 
anomaly score in Eq (2); two peaks where the anomaly score 
is above the threshold are considered as anomalies. Fig. 4 
shows the result of mapping the anomalies detected by the 
anomaly score to the real data. In the shaded areas including 
anomalies, it can be seen that the anomalies have been well 
detected.  

 

B. Data window search using a similarity formula 

As mentioned earlier, we try to convert detected anomalies 
(i.e., abnormal values) to appropriate values on a window 
basis. For this, we intend to utilize the information (such as 
periodicity and time continuity) of the normal window. The 
overall process of anomaly correction is as follows. 

1) Find the target window that is earlier than the anomaly 

window (in terms of time continuity). 

2) Find the normal window that is most similar to the 

target window (in term of periodicity). 

3) Replace the detected abnormal window with the 

normal window by using the information in the window next 

to the located normal window.  
 

Since time series data is time continuous, the data values 
at a particular point in time are strongly influenced by the data 
values at the nearest point in time. Therefore, we define a 
window adjacent to the window containing the abnormal 
value as the target window. Then, considering the periodicity, 
we can find the normal window with the most similar pattern 

  

 

Fig. 3. An example of anomaly detection with anomaly score. The black 
and red lines denotes the anomaly score and the threshold, respectively. 
The red circles represents the points that are identified as anomalies. 

 

 
 

 

Fig. 4. Result of mapping the detected anomalies to the test data. The black 
line denotes the real data, and the red dots denotes the anomalies 
detected with on the anomaly score. There are real anomalies (i.e., 
ground truths) in the shaded area. 

to the target window for the entire time series data. 
In this paper, we define a new similarity formula for 

detecting similar windows, as shown in Eq (3).  

 

 In Eq (3), T  is the target window and Si  is the search 
window i. The goal is to find the window Si  that is most 
similar to T throughout the time series data. W�i� is defined as 
in Eq (4), which is a function that gives a larger weight 
windows closer to the target window. The d�T, ��� in Eq (4) is 
the distance function between the target window T and the 
search window ��. This distance function is defined by taking 
into account the periodicity of time series data, and operates 
in a way that the closer it is to the reference window, the 
greater the importance of the window is emphasized, and the 
farther away it is, the greater the window's influence is 
reduced. The α is used to control the rate at which periodicity 
and temporal continuity are considered. 

 Anomaly score(ai) = �ei − μ�T ∑  �1(ei − μ )  (2) 

 
Weighted cosine similarity SIM (T, Si) 

�  
∑  �T ∙  Si�

n
i=1

‖T‖  ∙  ‖Si‖
� α�

∑  �T ∙  Si�
n
i=1  ∗  W(i)

‖T‖  ∙  ‖Si‖
� 

 
(3) 

 

W(i) � 1

1 � d(T, Si)
2                 

 
(4) 
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ALGORITHM FOR TIME SERIES DATA CORRECTION 

1 Function Correction(X) 

 Input: A test set of time series windows X 

 Output: A set of corrected time series windows X 

2  AE ← autoencoder model trained with training 

dataset 

3  N ← number of windows 

4  for i in 1 to N do 

5   Idx ← AnomalyDetection (X[i]) 

6   if Idx �� Anomaly 

7    X[i] ← DataGeneration(X[i]) 

8   end if 

9  end for 

10  return X 

11 end Function 

12 Function AnomalyDetection (x) 

13  A ← anomalyScore(x, AE[x]) 

14  if A > α then 

15   Idx ← Anomaly 

16  else A < α 

17   Idx ← Normal 

18  end if 

19  Return Idx 

20 end Function 

21 Function DataGeneration(x) 

22  n ← number of consecutive anomaly window 

23   j ← SimilarIndexDetection(x) + n 

24  x�← AE.encoder(X[j]) 

25  return x� 

26 end Function 

27 Function SimilarIndexDetection(x) 

28  for i in 1 to N do // refer to Eq. (3) & (4) 

29   S ← argmax X[i] (cos(X[i],x)+α(cos(X[i],x)∙ W�i�) 

30  end for 

31  return S 

32 end Function 

* For the anomalyScore function, refer to [6]. 

Fig. 5. The algorithm for time series data correction 

 

 

C. Autoencoder-based time series data correction 

After finding the window that most closely resembles the 
target window for anomaly correction in time series data, the 
next step is to generate and correct the data using the window 
information at the next point in time. The following two 
examples show the correction process; one is when there is a 
single anomaly window, and the other is when there are 
consecutive anomalies. 

As in the example in Fig. 6, assume that window 16 is 
detected as an abnormal window. First, window 15 at the 
previous point is set as the target window (T). Next, search 
window (S) number 7, which has the most similar pattern to 
the target window (T), is found. Then, by using the 
information within window 8 at the next time point, similar 
data is generated. The newly generated normal value replaces 
window 16 which contains the anomaly. Moreover, as in the 
example in Fig. 7, cases where abnormal windows are 
continuous may occur. As shown in this figure, if windows 16, 
17, and 18 are detected as abnormal windows, search window 
number 7 (S), which has the most similar pattern to window 
number 15 (T) at the previous time, is found. Then, similar 
data is generated by using the information within windows 8, 
9, and 10, and the generated normal value replaces the 
anomaly value, as in the case of Fig. 6. In our work, to 
generate similar data, we used a pre-trained LSTM 
autoencoder model for anomaly detection. 

Fig. 5 shows the pseudocode that performs the anomaly 
detection and data correction process based on the LSTM 
Autoencoder model. The Correction function is the main 
function that performs the correction process. First, it builds 
an LSTM Autoencoder model with prepared training dataset 
and then identify any abnormalities on a window-by-window 
basis through the AnomalyDetection function. At this time, if 
a particular window have an anomaly score higher than α 
through the anomalyScore function, then it is regarded as 
‘Anomaly’. When a window with ‘Anomaly’ data is detected, 
the DataGeneration function is called, which replaces an  
abnormal ‘Anomaly’ windows with automatically generated 
normal windows. Here, to find the optimal window that can 
replace the abnormal window, the SimilarIndexDetection 
function is called. Then, a new window similar to the window 
of the next time of the optimal window is generated by the 
LSTM autoencoder; that is, the Correction function replaces 
the window containing the normal values with an abnormal 
window. Fig. 8 shows the results of anomaly data being 
corrected by the data correction algorithm. 

  
Fig. 6. Time series data correction within an anomaly window 
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Fig. 7. Data correction for consecutive anomaly windows 

 

  

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of the raw data and corrected data. The red dotted line 
denotes the raw values that include anomalies, and the black line 
denotes the corrected values. 

 

III. RESULTS 

 In our experiments, we intend to evaluate the effectiveness 
of our proposed correction method indirectly through 
performance evaluation of prediction models that are 
developed with time series data corrected by our proposed 
method.  

 

A. Data setup 

For our performance evaluation, we have used the 
“Ambient temperature system failure” dataset (including 
anomaly labels) from the NAB (Numenta Anomaly 
Benchmark) collection at Kaggle.com. This dataset consists of 
7,267 hourly data points collected over 328 days from a single 
sensor. When composing training data and test data, we 
organized the data in window units, and one window consists 
of 60 time steps. In addition, to create a more accurate 
anomaly detection and correction model, we performed min-
max normalization on the data.  

Table I shows the performance of anomaly detection in 
terms of precision, recall, F1 score, and accuracy with the 

LSTM Autoencoder model, before correcting the detected 
anomalies to normal values. 

TABLE I.  ANOMALY DETECTION PERFORMANCE 

Evaluation Metric Value 

Precision 0.882 

Recall 1.0 

F1-measure 0.937 

Accuracy 0.983 

 

TABLE II.  PERFORMANCE OF PREDICTIVE MODELS FOR RAW DATA 

AND CORRECTED DATA 

Method 
LSTM GRU 

MAE MSE MAE MSE 

Raw data 0.551 0.065 0.625 0.055 

Mean-based 
correction 

0.902 0.074 0.890 0.084 

SVR-based 
correction 

0.489 0.057 0.477 0.056 

GAN-based 
correction 

0.486 0.055 0.468 0.056 

Proposed 

correction 
0.457 0.047 0.460 0.050 

 

B. Performance evaluationof data correction 

To evaluate the effectiveness of the proposed time series 
data correction method, we evaluated prediction models using 
the corrected data; the prediction models were built up by 
using LSTM and GRU algorithms., and their training data are 
prepared from both raw data and corrected data. The proposed 
correction method was compared with mean-based, Support 
Vector Regression (SVR) [7], and Generative Adversarial 
Neural Network (GAN) [8]. 

As performance metrics for time series data correction, we 
adopted the mean absolute error (MAE) and mean squared 
error (MSE); the smaller these values are, the better the 
performance of the prediction model. Table II shows the 
performance of the LSTM and GRU prediction models on the 
respective data. As seen in the table, the prediction model for 
the data corrected by the proposed method has the best 
performance with a 20% improvement over the original data. 

 

IV. CONCLUSION 

 In this paper, we proposed a new anomaly correction 
method for univariate time series data using an LSTM 
Autoencoder model and proved its effectiveness through 
experiments using NAB dataset. As future work, we plan to 
develop a deep learning architecture that can learn the 
correlation and dependence among variables for multivariate 
time series data correction. 
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