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Abstract—In motor condition monitoring, deep learning tech-
niques have been considered by using 2-dimensional plots as
datasets instead of time-series signals. For example, a Convolu-
tional Neural Network (CNN) can be trained using recurrence or
frequency-occurrence plots. While previous studies demonstrated
promising results using CNNs, the lack of discernible differences
in the plots rendered the model’s inner workings seem like a
black box. This study applies ten traditional machine learning
(ML) techniques and compares them with recent deep learning
(DL) techniques used in motor fault diagnosis using the same
dataset. The synthetically prepared motor current signal dataset
with 3,750 samples has five classes – healthy and four faulty
motor conditions, under five loading conditions – 0, 25, 50, 75,
and 100%. After similar training and testing phases, the light
gradient-boosting machine (LightGBM) showed the best overall
classification accuracy of 93.20%, significantly outperforming by
at least 10.4% the three CNN-based models, which obtained
performances that range from 74.80 to 82.80%. LightGBM also
has the best average performances in other metrics, such as
F1 score, precision, and recall. Five out of ten ML models
performed better than these three CNN-based models. Given
the excellent performance of traditional ML models such as
LightGBM, care and consideration has to be taken in the use
of deep learning architectures especially since they are more
computationally expensive and memory-intensive because there
seems to be no guarantee that they will perform better than
traditional models, especially on simpler problems, such as the
motor fault classification using current signals that we have
presented in this paper.

Index Terms—motor fault, machine learning, convolutional
neural network, deep learning, transfer learning, LightGBM

I. INTRODUCTION

Machine fault diagnosis plays an important role in the
industry. Accurate and timely identification of faulty machines
can help minimize downtime in production and operations,
allowing operators to react immediately and avoid delays and
downtime. Due to its ability to recognize patterns and make
informed predictions, artificial intelligence has been used for
machine fault diagnosis. The studies of [1] and [2] reviewed
the use of machine learning (ML), deep learning (DL), and
transfer learning (TL) in detecting motor faults. The works
of [3] explored the application of DL techniques in process
monitoring. The current popularity of DL or TL methods may
lead researchers to set aside traditional ML methods. This
study compares traditional machine learning techniques with
deep learning in motor fault detection.

A. Limitations of Image-Based Approaches Deep Learning

Two studies on motor fault classification that made use
of deep learning techniques are [4] and [5]. Reference [4]
obtained an overall performance accuracy of 80.25% in motor
fault detection while considering loading conditions. The other
study [5] used transfer learning or, specifically, pretrained Con-
volutional Neural Networks (CNNs) using the same dataset.
This latter study improved the performance a little to 82.80%.
The limitations of these two studies – the low overall ac-
curacy for both, and the inclusion of loading information
in the latter, led the authors of this paper to explore other
methods to improve performance. In addition, the developed
two-dimensional plots used by the earlier studies tend to be
less interpretable than the typical one-dimensional Fourier
transformed signals.

This study performs a comparative study of some traditional
machine learning techniques and applies them to original
motor signals in particular. It also considers developing a
CNN model based on recurrence plots by [6] from the original
current signals. In this way, a more detailed comparison will
be performed.

B. Machine Learning Methods

The traditional machine learning classifiers used in this
study are logistic regression, k-nearest neighbors (KNN),
Naive Bayes, decision trees, random forest [7], support vector
machines (SVM) [8], multilayer perceptrons (MLP), extra
trees [9], LightGBM [10], and AdaBoost [11].

Logistic regression excels at interpretability due to its linear
decision boundary. However, its performance may be better for
complex, non-linear relationships between features.

KNN is non-parametric classifier that predicts a data point’s
class based on the majority class of its K nearest neighbors in
the training data. While simple to implement and requiring
minimal parameter tuning, its accuracy is sensitive to the
choice of K and the presence of irrelevant features.

Naive Bayes’s simplicity and efficiency make it ideal for
large datasets with categorical features. However, its feature
independence assumption can limit its accuracy when features
are highly correlated. To classify a data point, it calculates
the posterior probability of each class based on the prior
probabilities and the likelihood of the data point’s features
belonging to each class.



Decision trees provide interpretability through their decision
rules, built on a series of splits separating data points from
different classes. They tend to be robust to irrelevant features
but can be sensitive to the chosen splitting criteria and prone
to overfitting without proper pruning.

Random Forest [7], an ensemble classifier, combines the
strengths of multiple decision trees, boosting accuracy through
diversity. It trains each tree on a different subset of the data
and predicts the class by averaging their individual predic-
tions. While inheriting interpretability from individual trees, its
training can be computationally expensive compared to single
decision trees.

SVMs [8] are known for their robustness to outliers and
effectiveness for high-dimensional data. They search for a hy-
perplane that maximizes the margin between different classes
in the training data. This hyperplane then forms the decision
boundary for new data points. While robust and effective,
SVMs have less interpretable decision boundaries, and their
training can be computationally expensive for large datasets.

MLP consist of interconnected layers of neurons that
process information through weighted connections, allowing
them to learn intricate relationships. However, MLPs require
significant training data and careful hyperparameter tuning to
avoid overfitting and improve generalizability, making them
less interpretable than other classifiers.

Extra trees [9], also known as extremely randomized trees,
are an ensemble learning method that uses multiple decision
trees for classification and regression tasks. They are similar
to random forests but with some key differences.

LightGBM [10], short for Light Gradient Boosting Machine,
is a high-performance, distributed gradient boosting frame-
work for various machine learning tasks. It is fast and effi-
cient due to its Gradient-Based One-Side Sampling (GOSS).
GOSS weights data points with larger gradients higher while
calculating the gain. In this method, instances that have not
been used well for training contribute more. LightGBM also
uses exclusive feature bundling.

AdaBoost [11], short for Adaptive Boosting, is an ensemble
learning algorithm in machine learning. It is used for classifi-
cation and regression tasks, but it’s most commonly associated
with classification. The main idea behind AdaBoost is to
combine the predictions of weak learners (typically simple
and not very accurate models) to create a strong learner that
performs well on the overall task.

These traditional algorithms often perform better with small
datasets. They also seem to require less computational power
and are generally easier to interpret. When it comes to in-
ference speed, they tend to be faster since their architecture
is simpler than the deep learning (DL) models. Lastly, these
methods can be less prone to overfitting, a common issue when
using deep learning on small datasets. This study investigates
their performance in motor fault diagnosis and compares them
with previously developed DL models.

TABLE I: Test motor specifications

Label Parameter/Value

Type AEEF-90-4 Induction motor
Output 2 HP
Pole 4
Insulation E
Volt 220/380 V
Amp 7 A
r.p.m. 1450/1720
Duty type S1
Cycle (Hz) 50/60
Connection delta low voltage/ wye high voltage
Manufacturer TW-141221 Tai Wei Electric Factory, Ltd.

TABLE II: Motor Conditions and Labels

Motor Condition Label

Bearing Axis Misalignment Fault 1
Stator Inter-Turn Short Circuiting Fault 2
Broken Rotor Strip Fault Fault 3
Outer Ring Bearing Fault Fault 4
No Fault Healthy

II. TEST MOTOR AND DATASET

Current signal data is collected from motors with specifi-
cations described in Table I, which is reproduced here from
[4] for easier reference. Concretely, data is collected from a
total of five motors. One motor is healthy, while the other
four motors have the following synthetically induced faults:
bearing axis misalignment, stator inter-turn short circuiting,
broken rotor strip fault and outer bearing fault. These 5 motor
conditions serve as the labels of the dataset. A summary is
given in Table II.

Moreover, each motor is sampled under five loading ca-
pacities: 0, 25%, 50%, 75% and 100%. For each motor
condition and loading capacity, 150 samples of five-second
current signals are collected, bringing the total dataset to 3750
items, having 750 samples for each of the five classes. A
preprocessing step on this dataset was performed before using
a CNN to classify them. A percentile clipping of 90% with
log normalization was applied to the data before performing a
Discrete Fourier Transform (DFT) on them. Finally, Frequency
Occurrence Plots (FOPs) are produced which transformed
these one-dimensional signal data into two-dimensional im-
ages. The FOP images are then fed to a CNN for classification.
A visual comparison of sample FOP and recurrence plots with
the DFT is shown in Fig. 2.

Frequency Occurrence Plots (FOPs) are visual representa-
tions of time series data, where each grid cell shows the num-
ber of times a specific combination of frequency and amplitude
occurs. This visual format allows for easy identification of
patterns, facilitates feature extraction for machine learning,
and serves as a data transformation tool for algorithms like
CNNs. FOPs are useful for analyzing motor current signals
for fault diagnosis, extracting speech recognition and image
processing features, and detecting anomalies in time series
data. The FOP images of this dataset were published and made
publicly available in [12]. The study of [5] used this published



Fig. 1: Sample features used by the traditional machine learning
methods in this study. The y-axis values range from 0 to 1 signifying
signal strength while the x-values range from 0 to 500 Hz . Note that
these images are only for illustration purposes. The actual data fed
to the ML methods is a one-dimensional vector instead of an image.

dataset in their work wherein they used a transfer learning
strategy to classify the motor faults.

This study used the raw current signals from the study in
[4], and, similar to it, applied all the previous preprocessing
steps except for the conversion to FOP images. All the
traditional machine learning techniques in this study used
that preprocessed data. Fig. 1 illustrates a sampling of the
preprocessed data for all classes under all loading conditions.

III. METHODOLOGY

This study presents two separate analyses of the motor
fault dataset: first, it applied a number of traditional machine
learning techniques on the preprocessed data as described in
the latter part of the previous section, and, second, it applied a
CNN to the Recurrence Plots produced from the preprocessed
data. For the ML methods, a grid search is done to find the best

TABLE III: CNN network architecture used in classifying the
Recurrence Plots of the dataset

Layer Size/rate Filters/Nodes Activation

Convolution + Batch Norm (3x3) 32 relu
Max Pooling (2x2) - -
Convolution + Batch Norm (3x3) 32 relu
Max Pooling (2x2) - -
Dropout 0.25 - -
Flatten - - -
Dense - 256 relu
Dropout 0.4 - -
Dense - 5 softmax

TABLE IV: Accuracy on entire data set for all loading
conditions

Method Code Accuracy (%)

LightGBM LGBM 93.20
K-Nearest Neighbors KNN 89.90
Random Forest RF 88.00
AdaBoost ADA 84.50
Multi Layer Perceptron MLP 84.10
Pretrained CNN on FOP [5]1 PTCNN-FOP 82.80
Logistic Regression LR 80.50
CNN on FOP [4] CNN-FOP 80.25
CNN on RP CNN-RP 74.80
Support Vector Machines SVM 74.50
Decision Tree DT 66.00
Extra Tree XT 64.30
Gaussian Naı̈ve Bayes GNB 47.50
1 Accuracy is taken as the average on all loads for Type 4

Classification reported in the paper.

set of parameters. This set of best parameters is then evaluated
using a stratified 5-fold cross-validation to obtain the accuracy
performance of the model. Finally, the best model is run on
the dataset on an 80% to 20% training and test split.

For the second analysis, Recurrence Plots (RPs) [13] are
produced from the preprocessed data and are fed to a CNN
with the architecture shown in Table III. The architecture is
based on [14], which used CNNs on RPs to predict rainfall
severity. Similar to that study, the cosine loss function and
Stochastic Gradient Descent with Warm Restarts are used in
the training of the network. A sample RP image used in this
study is provided in Fig. 2c.

A Recurrence Plot is a visual and quantitative tool for
analyzing the dynamic behavior of systems by exploring how
often they revisit states in their phase space. They reveal
recurring patterns, assess system stability and complexity, and
provide insights into synchronization and interaction between
multiple systems. To create an RP, time series data is first
embedded into a higher-dimensional phase space, representing
the system’s state at each time point. Then, recurrence calcu-
lation compares each pair of states in the phase space and
places a point in the RP matrix if they are similar. Finally,
the visualization of the RP matrix shows recurring states as
points, while empty cells indicate states that never recur. This
allows for easy identification of patterns and quantification of
the system’s behavior, making RPs valuable tools in various
fields.

IV. RESULTS AND DISCUSSION

Table IV and Fig. 3 show the performance of the analyses
described above, together with the previous studies of [4] and
Nandi et al. [5]. It can easily be seen that five traditional
models (LightGBM, K-Nearest Neighbors, Random Forest,
AdaBoost and Multilayer Perceptron) outperformed the two
previous studies. It is worth noting that the best model,
LightGBM, made a 16.13% improvement from the first study
and a 12.62% improvement from the second study while
using only one classifier and without using loading conditions.
Compared with the performance of CNN on FOPs (shown in



(a) Discrete
Fourier Transform

(b) Frequency
Occurence Plot

(c) Recurrence
Plot

Fig. 2: Illustration of the different preprocessed datasets used by the methods in this study. The images represent one sample of a healthy
motor with a loading capacity of 75%.

TABLE V: Performance1 of CNN and traditional ML Methods.

Metric Class CNN-RP CNN-
FOP [4] LR

PTCNN-
FOP [5]2 MLP ADA RF KNN LGBM

F1 Fault 1 83.90 90.00 56.10 91.70 76.10 77.90 81.80 84.40 90.10
Fault 2 60.40 76.60 64.20 91.85 81.40 82.60 87.40 91.50 92.90
Fault 3 78.20 81.00 76.90 84.25 75.00 90.30 90.70 93.70 94.70
Fault 4 67.40 68.40 51.60 91.70 66.90 76.40 80.50 83.10 91.00
Healthy 83.80 84.51 69.90 70.23 84.30 85.00 87.70 94.30 98.20
Average 74.74 80.25 63.74 88.47 76.74 82.44 85.62 89.40 93.38

Precision Fault 1 84.50 93.40 54.90 96.36 73.00 71.60 76.80 78.50 87.00
Fault 2 78.80 71.20 65.80 97.10 85.40 86.80 91.40 96.00 95.00
Fault 3 89.07 78.00 99.00 86.60 76.60 94.20 94.30 94.00 95.30
Fault 4 55.51 75.80 50.30 96.36 65.10 79.90 82.10 84.80 91.60
Healthy 82.97 84.67 60.80 58.63 84.30 81.20 84.20 94.30 97.90
Average 78.17 80.25 66.16 87.01 76.88 82.74 85.76 89.52 93.36

Recall Fault 1 83.40 86.60 57.40 87.99 79.40 85.30 87.50 91.20 93.40
Fault 2 48.90 83.00 62.70 87.33 77.70 78.90 83.70 87.30 91.00
Fault 3 69.70 84.60 62.90 87.33 73.50 86.80 87.40 93.40 94.00
Fault 4 86.00 62.60 52.90 87.99 68.80 73.20 79.00 81.50 90.40
Healthy 84.78 88.50 82.10 91.33 84.30 89.30 91.40 94.30 98.60
Average 74.56 81.00 63.60 88.40 76.74 82.70 85.80 89.54 93.48

1 Best scores are in bold.
2 It should be noted that [5] employed a different classification method. As the authors performed classification with

loading information, the values we present in the table is the average of what they reported across the different
loads. Moreover, the authors performed four types of classification: Type 1: Healthy vs. Fault 1 and Fault 4; Type
2: Healthy vs. Fault 2; Type 3: Healthy vs. Fault 3; and Type 4: Healthy vs. Faults 1 & 4, Fault 2 and Fault 3.
For this reason, in the table, the values of the rows for Fault 1 and Fault 4 are the same. Finally, the row values
for Healthy are taken Type 4 Classification.

Fig. 4), the confusion matrix of LightGBM (shown in Fig.
5) has excellent fault classification accuracies, achieving a
value higher than 90% on all labels. This strongly suggests
an excellent overall performance on the whole data set and on
each of the individual classes. As regards the second analysis
we employed in this paper — using CNN on RP — we can see
from Table IV that it was able to approach the performance of
both [4] and [5] but not surpass them. Six machine learning
methods outperformed it.

A detailed performance report is given in Table V. It lists
the two previous studies together with the traditional ML
methods and CNN on RP method used in this study. From
the table, it can be clearly seen that LightGBM obtained the
highest average F1, precision, and recall values. Additionally,

it almost obtained the highest values for all metrics and classes,
except for 5 items where it was beaten by PTCNN-FOP
[5] and 1 item where it was beaten by Logistic Regression.
However, LightGBM’s performance for these items was still
very close, except for the precision score for Fault 1. It is
worth emphasizing that the overall performance of LightGBM
is more balanced than both PTCNN-FOP and LR, showing its
dominance on both methods.

The underperformance of the CNN methods may not be
attributed to a lack of optimization of the architecture of
the CNNs. For example, the CNN-RP method presented in
this study was the best among multiple runs that explored
various hyperparameter values for the network architecture and
recurrence plots. A visual inspection of FOPs and RPs used



Fig. 3: Accuracy of the different methods

Fig. 4: Confusion matrix (in percentage) of the CNN applied to
Recurrence Plots [4]

by the CNNs shows similarities across images that are difficult
even for a human to distinguish. Moreover, the inductive bias
of CNNs is meant to take advantage of spatial hierarchies
and translation invariance. These are valuable for photographic
images but may not necessarily be advantageous when applied
to signals where peaks and valleys can easily be observed and
identified at specific locations, such as in the case of frequency
values in a Fourier Transform. CNNs can still be advantageous
when dealing with large datasets or complex relationships
within the data. However, for cases with limited data, like
the motor fault diagnosis in this study, simpler models may
offer a better option in terms of interpretability, efficiency, and
even accuracy.

Fig. 5: Confusion matrix (in percentage) of the best performing ML
model - LightGBM

V. CONCLUSION

In this paper, we investigated the performance of traditional
machine learning models, convolutional neural networks and
transfer learning for the classification of motor faults. The
results show that LightGBM had the best performance overall,
obtaining an average accuracy of 93.2% on a stratified 5-
fold cross-validation on all classes and loading conditions.
This result outperformed all methods in terms of average
F1, precision, and recall in all classes. This demonstrates
that machine learning methods are still relevant in analyzing
simple data and could provide a faster and more efficient
solution to less complex problems. One limitation that should
be mentioned is that feature engineering should be carefully
done. If feature engineering is done well, it may not be
necessary to employ more complex methods such as CNNs
and transfer learning especially on simpler problems. As the
advancement and popularity of deep learning and transfer
learning continue, the consideration of traditional machine
learning methods should not be overlooked, especially if faster
and more explainable methods are sought.

Several related future research in this area can be mentioned.
First, to conduct similar comprehensive comparison studies
using other dataset on motor condition monitoring. Second, to
consider other plot-based transformations such as short-term
Fourier transform and wavelet transforms as inputs to deep
learning methods such as [15] that used temporal Convolu-
tional Neural Network with an attention mechanism. Third, to
explore other deep learning techniques aside from plot-based
techniques. Finally, to undertake a more thorough theoretical
analysis on why traditional ML methods could outperform DL
methods on specific applications or datasets.
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