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Abstract—This research paper explores the transition from 

batch mixing to continuous mixing processes for the production 

of slurries used in lithium-ion battery cells. The conventional 

batch mixing methods, prevalent in European industry, suffer 

from time-consuming cleaning processes, lengthy mixing times, 

and the inability to monitor paste conditions in real-time. The 

study proposes a solution using continuous mixing with a twin-

screw extruder, highlighting advantages such as reduced 

cleaning time, immediate sample characterization, and 

minimized production risks. The research aims to develop a test 

setup and procedure to accelerate the understanding of the 

continuous mixing process, leveraging minimal resources and 

time, and facilitating the training of artificial intelligence 

algorithms. The ultimate goal is to create a digital twin 

encompassing all influencing factors for predictive and 

prescriptive analytics. The methodology involves literature 

reviews, expert surveys, and experimental setups, with an 

emphasis on inline measuring devices. The paper presents 

results related to relevant product characteristics, influencing 

factors, and the selection of suitable measuring equipment. The 

experimental setup includes a database structure, human-

machine interface, and visualization of measurement data. The 

study concludes with insights into the correlation analysis of 

influencing factors and product characteristics, emphasizing the 

need for further experiments and the development of algorithms 

for predictive quality assessments in continuous mixing 

processes.  
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I. INTRODUCTION  

The production of slurries for lithium-ion battery cells is 

primarily carried out in batch mixing processes, especially in 

the European industry [2]. The pastes are produced in a multi-

stage process in the plants, which often have a capacity of up 

to 3,000 liters. Very time-consuming cleaning processes are 

sometimes necessary between the individual process steps. 

The actual mixing process is also time-consuming and often 

takes several hours [3, 4]. According to the current state of the 

art, it is not possible to monitor the condition of the paste 

during the mixing process, which is why offline material 

characterization is necessary afterwards. Only after successful 

characterization is the paste released for further production, 

i.e. the coating of the electrode sheets. This lengthy production 

process limits the maximum production output. Increasing 

electrification in all areas of life is also leading to rising 

demand for lithium-ion batteries [5]. In order to meet the 

increasing demand, appropriate technologies with higher 

output quantities are required. A challenge connected to this 

is producing consistend quality across multiple batches [3, 6].  

 

One possible solution is continuous mixing with a twin-screw 

extruder [2, 7, 8]. The material is fed into the extruder via 

various connections and automatic dosing systems. The 

position of the feeders can be varied as required. Mixing takes 

place in a chamber with two either counter-rotating or co-

rotating screws [9]. Continuous mixing is characterized by 

various advantages over batch mixing. For example, there is 

no need for time-consuming cleaning of the mixing tools and 

containers as long as the same recipe is produced over a 

relatively long period of time. In addition, an initial material 

sample can be taken promptly after the start of the process to 

characterize the slurries. Therefore it is possible to determine 

the produced quality much earlier. This reduces the risk of 

rejects compared to batch mixing. The continuous mixing 

process is particularly suitable when large quantities of a 

recipe are produced and no material changes are made [10]. 

However, running in the process is complex due to the large 

number of influencing variables [11].  

Batch mixing tho allows to test the batch once for its 

characeristics and therefore determine the quality of the entire 

batch. Continous mixing requires permanent testing in order 

to prevent quality issues in later production steps. For constant 

monitoring of the production quality, the reduction of the 

processes complexity and to improve the knowledge of This work was supported by a grant from the German Federal Ministry for 
Economic Affairs and Climate Action for the project ”TwinTrace” under 

grant 03ETE044B. 



 

 

coherences data driven models like digital twins, data 

analytics and predictive analytics offer a solution.   

II. MOTIVATION 

A technology change from batch mixing to continuous mixing 

poses challenges for companies. For example, it can be 

assumed that extensive process know-how is not yet available 

at the time of the changeover. In addition, the literature 

provides only a few preliminary studies that were primarily 

carried out under laboratory conditions, and these mostly 

relate to cell performance and not to the process know-how 

required for electrode production [12–14]. This work 

addresses this problem. The development of process know-

how is usually associated with a lot of time and effort. In 

addition, no data-driven analysis methods can be used to 

extract knowledge, as there is simply no or very little data 

available about the new processes. Therefore, the aim of this 

work is to develop a test setup and procedure that makes it 

possible to build up the deepest possible understanding of the 

process with minimal resources and time. The research 

question of this work is how a testing setup for data generation 

in the continuous mixing of battery slurries must be designed 

to allow quick results considering the gain of process 

knowledge and the training of artificial intelligence 

algorithms.  

The long-term goal is to create a digital twin of all influencing 

factors and product characteristics of the process of 

continuous mixing of battery slurries, which can be used for 

predictive and prescriptive analytics.  

III. RESEARCH METHODOLOGY 

The methodological approach of this research consists of three 

overarching steps. Firstly, the experiments and data collection 

are prepared. The preparation is based on a literature review 

of previous work in the field of cause-and-effect relationships 

in the continuous mixing of slurries for lithium-ion battery 

cells and an expert survey. The survey is conducted with 

experts in battery cell production, dispersion technology and 

extrusion technology. This process step aims to identify 

possible influencing factors and product characteristics to be 

manufactured and to qualitatively evaluate the influence of the 

individual influencing factors on the product characteristics.  

The measurement and data concept is then designed on the 

basis of this evaluation. Additional input for this step is 

provided by the requirements with regard to the digital 

technology connection, the requirements for the measurement 

data to be collected and the expectations of the machine 

operators with regard to the graphical user interface (GUI). 

The results of this step are an initial prototype of the GUI, the 

selection of suitable measuring devices and a database 

structure including a data connection plan.  

The final step is the testing and verification of the test setup. 

The input is a two-factor test plan previously developed on the 

basis of the influencing factors and measured values from 

samples characterized offline. The aim of this step is to create 

a preliminary database and verify the developed test setup in 

order to subsequently carry out further tests and thus generate 

a more meaningful database. Figure 1 shows the methodical 

procedure including input and output of the respective method 

step.  

As organic solvents are used for the production of cathode 

material and therefore, special occupational safety regulations 

apply and special testing equipment is needed, this paper only 

considers anode material [15]. Different formulations are also 

not considered.  

As presented in the previous chapter, literature research 

together with expert interviews and expert workshops form 

the basis for the further procedure in this thesis. The aim is to 

collect potential influencing factors of the production process 

and product characteristics to be manufactured. This is 

followed by a qualitative evaluation of each influencing factor 

in relation to the various product characteristics. 

The evaluation is based on values from 0 to 3, with 0 

indicating no influence of the factor on the product 

characteristic and 3 indicating a high influence. It is also 

possible not to evaluate a factor/characteristic combination if 

the state of scientific knowledge does not allow a statement to 

be made. Unevaluated influences are indicated by a minus 

sign. Figure 2 shows a schematic representation of the 

qualitative evaluation matrix.   

 
Fig. 1. Process of the applied method 

 
Fig. 2. Template of the used evaluation matrix 

factor 1 factor 2 factor 3

characteristic 1 1 0 2

characteristic 2 1 2 3

characteristic 3 2 3 1
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The evaluation matrix can be used to prioritize influencing 
factors and product characteristics. The prioritization allows 
targeted preliminary tests to be carried out. In addition, the 
target values of the respective product characteristics and the 
associated tolerances are recorded. This information forms the 
basis for the subsequent selection of suitable measuring 
equipment. 

IV. RESEARCH RESULTS 

Expert interviews and research have shown that viscosity, 

density, particle size distribution and temperature are relevant 

product characteristics. Viscosity is particularly relevant 

against the background of further processing during coating, 

while the particle size distribution provides information on 

homogeneous mixing of the slurry [16]. Therefore, measuring 

devices for density, particle size distribution and viscosity are  

required to characterize the slurry. In addition, the temperature 

of the paste must be monitored, as the measured density and 

viscosity are temperature-dependent [16, 17].  

The influencing factors determined and the sum of their 

weighting across all product characteristics, in parantheses, 

are the speed of the extruder's main drive (6), the throughput 

(5), the setting of the vacuum valve (3), the system 

temperature control (5), the position of the liquid dosing (6) 

and the configuration of the screws (4).  

As changing the screw configuration and changing the 

positioning of the liquid dosing unit in industrial systems 

involves considerable additional work, these factors are no 

longer considered below. In addition, the degree of 

homogenization of the paste produced is not considered in this 

work. This is planned for future tests.  

 

The selection of suitable measuring equipment is limited to 

inline measuring devices, as these allow the paste to be 

characterized immediately after production. This minimizes 

the time lag between production and characterization. Inline 

measuring devices also make it possible to avoid influencing 

factors such as inaccuracies during sampling and 

characterization, for example, due to excessive time lags 

between sampling and testing. In addition, continuous 

sampling of the slurries produced is possible, which makes the 

effects of process fluctuations on the product characteristics 

visible. The requirements for the measuring devices also 

include a standardized process interface, a uniform and 

standardized digital communication interface where possible 

and coverage of the required measuring range.  

The following table lists the measuring devices used and their 

respective properties.  

  
TABLE I. Criteria for the selection of measuring devices and their 

properties 

criteria density viscosity 
particle size 

distribution 

Measuring 

range 

 

< 3,000 

kg/m³ 

250 mPas – 

12,500 mPas 

0.1 μm -

3,000 μm 

Process 

connection 

 

tri-clamp tri-clamp tri-clamp 

digital 

connection 
ModbusTCP ModbusTCP TCP/IP 

The data recorded by the measuring devices during the test 

was merged with the machine control data in an open source 

time series database. The database is connected to a human-

machine interface (HMI) on which the measurement data is 

displayed visually using open source software. The schematic 

representation of the test setup is shown in Figure 3. This setup 

makes it possible to monitor the process during the test and 

draw initial conclusions about the functionality of the system.  

Recording the influencing variables also enables precise 

planning of the test procedure. With the help of factorial test 

planning, the number of tests to be carried out can be reduced 

compared to the one-factor-at-a-time method. A test plan with 

two stages and five factors results in 32 individual tests [18]. 

Since parameters on the extruder change after each test and a 

certain process time elapses until all material of the old 

parameters has passed through the test setup, this means a high 

expenditure of time and material. This is not an expedient 

procedure for an initial preliminary examination of the test 

setup. For this reason, a reduced analysis is initially carried 

out using a screening test plan of resolution V, which offers a 

low risk of misinterpretation of the results, as all two-factor 

interactions can be considered. The number of tests to be 

carried out can thus be reduced from 32 to 16 [18].  

 
 

Fig. 3. Material and data flow of the test setup 



 

 

Carrying out the tests and cleansing the data generates the 

data volumes per product characteristic shown in the 

following table. Due to technical issues with the testing 

devices and the twin-screw extruder during several test runs 

the amount of usable data is highly reduced. Only data from 

6 out of 16 tests are included in the following. 

Table II. Amount of collected data per property after cleansing  

measured 

property 
density viscosity 

particle size 

distribution 

Amount of 

data entries 

after 

cleansing 

6,120 5,037 401 

 

The further evaluations are limited to the viscosity, as no 

further results were available at the time of writing. The more 

detailed analysis of the available measured values does not 

allow any conclusions to be drawn about significant 

correlations between the respective influencing factors and the 

viscosity. The correlation is -0.375 for the vacuum valve 

setting, 0.375 for the speed, 0.257 for the throughput and 

0.385 for the system temperature control. Over all carried out 

tests the inline measure viscosity varied between 670 mPas to 

787 mPas with a mean absolute deviation from the arithmetic 

mean of 24 mPas. This relatively low deviation also shows the 

minor impact of the conducted parameter changes in the 

individual test runs. 

In addition to the pure data recording, the inline measured 

values were compared with offline measured values. For the 

individual tests, additional manual samples were taken, the 

viscosity of which was determined on a rheometer. While the 

viscosity measured inline averages 670 mPas, the viscosity 

measured offline averages approx. 880 mPas. The difference 

between the measured values can be attributed to the different 

measurement principles of offline and online measurement. 

This can be dealt with by determining an offset. However, this 

requires further testing. Based on the available data, no clear 

rule can be derived for the comparability of the data from 

inline and offline measurements.  

V. CONCLUSION AND OUTLOOK 

The results presented show how an experimental setup can be 

designed for targeted data generation in the continuous mixing 

of anode slurries for lithium-ion battery cells. The basic 

functionality of the experimental setup has also been 

demonstrated on the basis of the data. The methodical 

approach of this work can be used to create a low-cost 

database for process analyses and to generate process know-

how. This work thus lays the foundation for creating a more 

comprehensive database in further tests, which includes 

factors not considered in this work, such as the positioning of 

the liquid dosing and longer test run times. In addition, the 

degree of homogenization can be considered in the future. AI 

algorithms can be trained with the help of such a database. 

Following this work, a Bayesian network is first modeled, as 

this allows both qualitative and quantitative data to be 

correlated. In addition, correlations between the individual 

influencing factors can be visualized in this way [19]. Based 

on this, individual influencing factors are examined in more 

detail and supplemented with quantitative data. The aim is to 

gradually map all relevant influencing factors of extruder 

mixing digitally. In future, for example, the inline measuring 

devices could be replaced by predictive quality algorithms. 

There is a need for further research into the development of 

algorithms for determining parameters for fluctuating process 

input variables such as batch fluctuations in the raw materials. 

In summary, it can be said that this work answers the question 

of how an experimental setup can be designed with the aim of 

generating data which in a later step can be used to train 

predictive and perscriptive algorithms for continuous mixing. 

However, further experiments are required to make valid 

statements on correlations between the influencing factors and 

product characteristics as well as interactions between them. 

Also further data are needed in order to train above mentioned 

algorithms.   

REFERENCES 

VI. REFERENCES 

[1] Project “DigiBattPro 4.0” – Digitaliaierte 

Batteriezellproduktion 4.0. founded by the German 

Federal Ministry of Education and Research 

(BMBF).: 

https://www.ipa.fraunhofer.de/de/referenzprojekte/Dig

iBattPro40-BMBF.html - BMBF reference number: 

03XP0374C. 

[2] Haarmann, M.; Grießl, D.; Kwade, A. Continuous 

Processing of Cathode Slurry by Extrusion for 

Lithium‐Ion Batteries. Energy Tech, 2021, 9. 

[3] Manke, D. Bereit für die Gigafabriken von morgen. 

CITplus, 2023, 26, 23–25. 

[4] Heiner, H. Produktionsprozess einer Lithium-Ionen-

Batteriezelle, 2018. 

[5] Berger, R. The Lithium-Ion (EV) battery market and 

supply chain: Market drivers and emerging supply 

chain risks. 

https://content.rolandberger.com/hubfs/07_presse/Rola

nd%20Berger_The%20Lithium-

Ion%20Battery%20Market%20and%20Supply%20Ch

ain_2022_final.pdf (Accessed December 8, 2023). 

[6] Lorenzoni, A. Mischer und Extruder für 

Batteriechemie. CITplus, 2022, 25, 16–17. 

[7] Gasdia-Cochrane, M. Batch vs Continuous 

Manufacturing of Battery Electrode Slurry. 

https://www.thermofisher.com/blog/materials/batch-

vs-continuous-manufacturing-of-battery-electrode-

slurry/ (Accessed November 21, 2023). 

[8] Grießl, D.; Adam, A.; Huber, K.; Kwade, A. Effect of 

the Slurry Mixing Process on the Structural Properties 

of the Anode and the Resulting Fast-Charging 

Performance of the Lithium-Ion Battery Cell. J. 

Electrochem. Soc., 2022, 169, 20531. 



 

 

[9] Fernandez-Diaz, L.; Castillo, J.; Sasieta-Barrutia, E.; 

Arnaiz, M.; Cabello, M.; Judez, X.; Terry, A.; 

Otaegui, L.; Morant-Miñana, M.C.; Villaverde, A. 

Mixing methods for solid state electrodes: Techniques, 

fundamentals, recent advances, and perspectives. 

Chemical Engineering Journal, 2023, 464, 142469. 

[10] Rohkohl, E.; Schönemann, M.; Bodrov, Y.; Herrmann, 

C. Multi-criteria and real-time control of continuous 

battery cell production steps using deep learning. 

Advances in Industrial and Manufacturing 

Engineering, 2023, 6, 100108. 

[11] Rao, R.R.; Pandey, A.; Hegde, A.R.; Kulkarni, V.I.; 

Chincholi, C.; Rao, V.; Bhushan, I.; Mutalik, S. 

Metamorphosis of Twin Screw Extruder-Based 

Granulation Technology: Applications Focusing on Its 

Impact on Conventional Granulation Technology. 

AAPS PharmSciTech, 2021, 23, 24. 

[12] Haarmann, M.; Grießl, D.; Kwade, A. Continuous 

Processing of Cathode Slurry by Extrusion for 

Lithium‐Ion Batteries. Energy Tech, 2021, 9, 

2100250. 

[13] Haarmann, M.; Haselrieder, W.; Kwade, A. 

Extrusion‐Based Processing of Cathodes: Influence 

of Solid Content on Suspension and Electrode 

Properties. Energy Tech, 2020, 8, 1801169. 

[14] Dreger, H.; Bockholt, H.; Haselrieder, W.; Kwade, A. 

Discontinuous and Continuous Processing of Low-

Solvent Battery Slurries for Lithium Nickel Cobalt 

Manganese Oxide Electrodes. Journal of Elec Materi, 

2015, 44, 4434–4443. 

[15] Zhang, Y.; Grant, A.; Carroll, A.; Gulzar, U.; 

Ferguson, M.; Roy, A.; Nicolosi, V.; O’Dwyer, C. 

Water-Soluble Binders That Improve Electrochemical 

Sodium-Ion Storage Properties in a NaTi 2 (PO 4 ) 3 

Anode. J. Electrochem. Soc., 2023, 170, 50529. 

[16] Hawley, W.B.; Li, J. Beneficial rheological properties 

of lithium-ion battery cathode slurries from elevated 

mixing and coating temperatures. Journal of Energy 

Storage, 2019, 26, 100994. 

[17] Shanbedi, M.; Zeinali Heris, S.; Maskooki, A. 

Experimental investigation of stability and 

thermophysical properties of carbon nanotubes 

suspension in the presence of different surfactants. J 

Therm Anal Calorim, 2015, 120, 1193–1201. 

[18] Kleppmann, W. Taschenbuch Versuchsplanung: 

Produkte und Prozesse optimieren, 7th ed.; Hanser 

Verlag: München, 2011. 

[19] Kjærulff, U.B. Bayesian Networks and Influence 

Diagrams: A Guide to Construction and Analysis, 2nd 

ed.; Springer: New York, NY, 2013. 

 

 

 

 

 


