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Abstract— This review provides a structured literature 
analysis of Artificial Intelligence (AI) applications in enhancing 
manufacturing resilience. The research is guided by three 
primary questions addressing the use cases, technologies, and 
benefits of AI across the five resilience phases: Prepare, Prevent, 
Protect, Respond, and Recover. Findings from 78 papers reveal 
that AI significantly contributes to predictive maintenance, risk 
mitigation, and quality control, with machine learning and deep 
learning being the predominant technologies. The study 
highlights the pivotal role of AI in advancing manufacturing 
towards proactive, resilient, and adaptable operations. The 
insights gleaned offer a roadmap for future research and 
practical AI integration in manufacturing, underscoring the 
value of AI in driving industrial innovation and efficiency. 
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I. INTRODUCTION 
In the evolving landscape of manufacturing, resilience has 

become a pivotal aspect for businesses striving to maintain 
continuity and competitiveness amidst various challenges. 
Drawing inspiration from Fischer's model [79] and Thoma’s 
'Resilience-by-Design' [80], the concept of resilience in 
manufacturing can be structured into five distinct phases. 
These phases serve as a framework for manufacturers to not 
only withstand disruptions, but also to adapt and thrive in the 
face of adversity. Below, we explore how each of these phases 
– Prepare, Prevent, Protect, Respond, and Recover – plays a 
crucial role in building a robust manufacturing sector that can 
effectively navigate the complexities of modern industrial 
challenges. 

Phase 1 Prepare: This phase involves the initial steps 
where a manufacturing entity anticipates potential disruptions 
and prepares accordingly. Preparation might include assessing 
risks, gathering resources, training personnel, and establishing 
protocols for dealing with potential crises or disruptions.  

Phase 2 Prevent: In this phase, the focus is on taking 
proactive measures to prevent disruptions before they occur. 
This could involve implementing advanced technologies for 
early detection of problems, improving quality control 
measures, or refining supply chain processes to mitigate risks. 

Phase 3 Protect: The protection phase is about 
safeguarding the critical assets and functions of the 
manufacturing process. This involves deploying systems and 

strategies to protect against identified risks, whether they are 
physical (like machinery and infrastructure) or digital (such as 
cybersecurity measures). 

Phase 4 Respond: When a disruption occurs, the response 
phase kicks in. This is about effectively managing and 
mitigating the impact of the disruption on the manufacturing 
process. Response actions might include activating 
contingency plans, reallocating resources, or using alternative 
processes to maintain production. 

Phase 5 Recover: Post-disruption, the recovery phase 
focuses on returning to normal operations as quickly and 
efficiently as possible. This involves repairing any damages, 
addressing supply chain disruptions, learning from the 
incident, and improving processes and systems to better 
handle future disruptions. 

These phases represent a comprehensive approach to 
building resilience in the manufacturing sector, encompassing 
proactive and reactive strategies to handle potential 
disruptions effectively. Transitioning into the realm of 
Artificial Intelligence (AI), it's intriguing to consider how AI 
technologies can significantly bolster each of the five 
resilience phases in manufacturing. AI's capabilities in data 
analysis, predictive modeling, automation, and real-time 
decision-making can be harnessed to enhance the 
effectiveness of each phase, offering a more dynamic and 
intelligent approach to resilience. In the following sections, 
we delve into the specific roles AI can play in Prepare, 
Prevent, Protect, Respond, and Recover phases, illustrating 
how AI not only complements but also elevates the resilience 
of the manufacturing sector. This exploration underscores the 
transformative potential of AI in redefining the resilience 
strategies within the industry. 

II. RESEARCH METHODOLOGY 

 Systematic Literature Review 
A Systematic Literature Review (SLR) is a methodical 

approach to collate, evaluate, and synthesize all relevant 
findings on a research topic, aimed at addressing specific 
research queries. Recognized as a standard methodology for 
deriving insights from literature based on prior studies [81]. 
This study encompasses a wide array of esteemed 
publications, including IEEE Xplore, Science Direct, 
Springer, and ResearchGate and MDPI. The SLR process 
involves several key steps: defining the scope of the research, 
formulating research questions, gathering research data, and 
conducting thorough analyses and summaries of the findings. 

This work was supported by a grant from the German Federal Ministry 
of Education and Research (BMBF) for the project “DigiBattPro 4.0” [82] 
under grant 03XP0374C. 



 Research Questions and Motivation 
To develop a comprehensive understanding of the role of 

Artificial Intelligence (AI) in enhancing manufacturing 
resilience, it's crucial to explore each research question in 
depth. Here are the three research questions. 

TABLE I.  RESEARCH QUESTIONS 

ID Research Question 

RQ1 

What are the specific use cases within each of the five 
phases of the resilience cycle where AI is applied in 
manufacturing? 

RQ2 
Which AI technologies have been employed to implement 
the use cases for enhancing resilience in manufacturing? 

RQ3 

What are the anticipated benefits and positive impacts of 
integrating AI technologies for enhancing resilience in 
manufacturing? 

 

Each research question is designed to uncover layers of AI 
application in manufacturing resilience, providing a nuanced 
understanding that can guide future research, development, 
and practical implementation in the field. 

1) RQ1: What are the specific use cases within each of 
the five phases of the resilience cycle where AI is applied in 
manufacturing? 

This question seeks to identify AI's practical applications 
in enhancing manufacturing resilience. Understanding these 
use cases helps manufacturers tailor AI solutions to their 
specific needs throughout different resilience phases. 

2) RQ2: Which AI technologies have been employed to 
implement the use cases for enhancing resilience in 
manufacturing? 

This question aims to map out the AI technologies used in 
manufacturing resilience. Identifying these technologies 
provides insights into the current technical landscape and aids 
in the dissemination of effective AI applications in the 
industry. 

3) RQ3: What are the anticipated benefits and positive 
impacts of integrating AI technologies for enhancing 
resilience in manufacturing? 

This inquiry focuses on the expected advantages of AI 
integration in manufacturing. Understanding these benefits is 
crucial for justifying AI investments and informs strategic 
decisions related to efficiency, downtime reduction, and 
adaptability.  

 Result Finding 
To answer the Research Question above, the researcher 

conducted a search on research papers published in several 
popular literatures with specific search terms. The search term 
is “AI for Resilience in manufacturing plant”. 

Utilizing multiple criteria, we implement a sequential 
filtering process. Initially, we apply the E1 criterion as the 
primary filter. Subsequently, we integrate and employ the I1, 
I2, and I3 criteria for the second stage of filtration. Finally, the 
third stage involves the simultaneous application of the E2 and 
E3 criteria, resulting in the selection of 78 pertinent papers 

TABLE II.  SEARCH RESULTS OF EACH DATABASE JOURNAL 

Database 
journal Search term Number of 

articles found Relevant 

Science Direct 

AI for Resilience in 
manufacturing plant 

928 39 

IEEE Xplore 33 14 

Springer 401 6 

ResearchGate 2341 16 

MDPI 14 3 

Total 3717 78 

TABLE III.  INCLUSION AND EXCLUSION CRITERIA 

Criteria 

Inclusion 

I1 

Research papers related to utilization of 
Artificial intelligence in manufacturing, 
focusing on how it enhances resilience in 
manufacturing plant. 

I2 Papers published from 2010 to 2023. 

I3 Only research papers will be taken into 
consideration; books will not be included. 

Exclusion 

E1 Papers which are not in English. 

E2 Papers that are from different database. 

E3 Research papers addressing supply chain   
issues in manufacturing. 

III. RESEARCH RESULT 
This section presents a synthesis of the selected studies, 

providing a coherent narrative of how AI is driving 
advancements in manufacturing resilience and setting the 
stage for an era of smart manufacturing. 

 Use Case Utilization Across Resilience Phases 

TABLE IV.  USE CASE UTILIZATION  
ACROSS RESILIENCE PHASES 

AI 
Technology 

Pr
ep

ar
e 

Pr
ev

en
t 
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ec
t 

R
es

po
nd

 

R
ec
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er

 

Fault 
detection 

[8], [43], 
[72] 

[13], 
[14], 
[21], 
[43], 
[64], 
[69], 
[72] 

[11], [13], 
[16], [30], 
[31], [32], 
[34], [35], 
[36], [37], 
[38], [39], 
[40], [51], 
[53], [64], 
[69], [72] 

[16], 
[21], 
[31], 
[32], 
[43] 

[16], 
[31], 
[32], 
[43], 
[72] 

Fault 
diagnosis 

[43] [13], 
[14], 
[21], 
[33], 
[43] 

[11], [13], 
[16], [34], 
[35], [36], 
[37], [38], 
[39], [40], 
[51], [53] 

[16], 
[21], 
[43] 

[16], 
[43] 

Fault 
tolerant 

[43] [43] [27], [31], 
[32] 

[31], 
[32], 
[43] 

[31], 
[32], 
[43] 

Predictive 
mainten-

ance 

[2], [5], [8], 
[22], [28], 
[42], [43], 
[44], [60], 
[72], [76] 

[42], 
[43], 
[57], 
[60], 
[72], 
[76] 

[11], [15], 
[16], [17], 

[72] 

[16], 
[17], 
[43] 

[16], 
[17], 
[43], 
[72] 

Product 
inspection 
for faults 

[8], [43], 
[77] 

[23], 
[24], 
[25], 

[52], [77] [43] [43] 



AI 
Technology 

Pr
ep

ar
e 

Pr
ev

en
t 

Pr
ot

ec
t  

R
es

po
nd

 

R
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er

 

[26], 
[43], 
[52], 
[77] 

Prognostics 
and health 
manage-

ment 

[8] [21], 
[33] 

[37] [21]  

Scheduling [45], [46], 
[47], [55], 
[56], [58], 

[59] 

[9], 
[55], 
[56], 
[75] 

[46], [47], 
[75] 

  

Smart 
manufac-

turing 

[1], [2], [3], 
[4], [6], [7], 
[20], [42], 
[65], [66], 
[68], [70], 
[71], [72], 
[73], [74], 

[78] 

[10], 
[42], 
[72] 

[17], [72] [17], 
[20] 

[17], 
[72] 

Zero defect 
manufac-

turing 

  [15]   

 
1) Resilience Phase Contribution 

Each phase of resilience in manufacturing is enhanced 
by the strategic application of AI technologies, improving the 
sector's ability to withstand and quickly bounce back from 
various challenges. These advancements indicate a shift 
towards a more proactive, intelligent, and resilient 
manufacturing industry.  

1. Prepare: In the preparation phase, AI technologies, 
particularly machine learning, are utilized for predictive 
analytics and self-organizing systems, helping plants 
anticipate changes and prepare for potential disruptions. 

2. Prevent: Prevention efforts are bolstered by AI 
through predictive maintenance and risk assessments, using 
machine learning algorithms to proactively address potential 
issues before they manifest. 

3. Protect: AI aids in the protection of manufacturing 
operations from identified risks, deploying systems like 
Digital Twins and neural networks to safeguard against both 
physical and digital threats. 

4. Respond: During the response phase, AI is critical 
for managing and mitigating the impact of disruptions 
through rapid fault detection and health monitoring, 
employing machine learning and deep learning to adapt and 
make real-time decisions. 

5. Recover: AI's role in the recovery phase is 
characterized by self-healing mechanisms and predictive 
maintenance, using deep learning to predict equipment 
failure and facilitate efficient recovery. 

2) Use Case Contribution 
Each of the following nine use cases demonstrates the 

diverse and impactful ways in which AI is being used to 
enhance manufacturing resilience, with the potential to 
significantly improve efficiency, quality, and sustainability 
within the sector. 

1. Predictive Maintenance: AI, particularly machine 
learning, is central to predictive maintenance, enabling the 
early detection of potential failures and scheduling timely 
maintenance activities, thus minimizing downtime and 
extending machinery life. 

2. Zero Defect Manufacturing: Techniques such as 
deep learning and data mining are applied to achieve zero 
defect manufacturing, focusing on defect detection, 
prevention, and compensation to maintain high-quality 
standards in production. 

3. Scheduling: AI technologies, including various 
forms of evolutionary algorithms and reinforcement learning, 
are used to enhance scheduling efficiency, particularly under 
conditions of uncertainty and machine breakdowns, ensuring 
continuous production flow. 

4. Fault Detection: Through the application of image 
processing and neural networks, AI is employed to detect 
faults in real-time, providing crucial data for maintaining the 
integrity and reliability of the manufacturing process. 

5. Fault Diagnosis: AI's diagnostic capabilities are 
showcased through the use of deep learning and machine 
learning algorithms that interpret sensor data and identify the 
root causes of equipment malfunctions, leading to informed 
decision-making. 

6. Fault Tolerant: AI contributes to the creation of 
fault-tolerant systems by employing machine learning 
algorithms that anticipate and compensate for potential 
system errors, thereby ensuring uninterrupted manufacturing 
operations. 

7. Smart Manufacturing: AI is a key driver of smart 
manufacturing, with its applications ranging from real-time 
monitoring and control to intelligent adaptation based on 
predictive analytics, enhancing overall manufacturing 
intelligence. 

8. Product Inspection for Faults: Advanced image 
processing and deep learning techniques are implemented for 
the inspection of final products, ensuring that any defects are 
identified and addressed before the products are shipped. 

9. Prognostics and Health Management: In prognostics 
and health management, AI leverages predictive analytics 
and machine learning to forecast the remaining useful life of 
machinery, enabling proactive maintenance and resource 
planning. 

 AI Technology Utilization Across Resilience Phases 
This section provides an overview of how different 

Artificial Intelligence (AI) technologies are applied across 
the five resilience phases in manufacturing: Prepare, Prevent, 
Protect, Respond, and Recover. It identifies which specific AI 
technologies, such as Machine Learning, Deep Learning, 
Image Processing, Reinforcement Learning, and 
Miscellaneous AI Technologies, are being utilized in each 
phase. The table lists references to papers that exemplify the 
use of these technologies in corresponding phases, providing 
a comprehensive view of the technological landscape in 
manufacturing resilience. 
  



TABLE V.  AI TECHNOLOGY UTILIZATION  
ACROSS RESILIENCE PHASES 

AI 
Technology 

Pr
ep

ar
e 

Pr
ev

en
t 

Pr
ot

ec
t 

R
es

po
nd

 

R
ec
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er

 

Machine 
Learning 

[1], 
[4], 

[28], 
[76] 

[2], [5], 
[45], [46] 

[21], 
[27], [48] 

[11], 
[15], 

[30], [53] 

[19], 
[42], 
[43], 
[69], 
[72] 

Deep 
Learning 

 [2], [21]  [8], [30], 
[53] 

[29], 
[31], 
[72] 

Image 
Processing 

   [23], 
[24], 

[25], [26] 

 

Reinforce-
ment 

Learning 

   [8], [45], 
[52], [67] 

 

Miscellaneou
s AI 

Technologies 

[1], 
[19], 
[28], 
[76] 

[2],  
[3], [5], 

[10],  
[21], [46] 

 

[3], [20], 
[21], 
[27], 

[48], [68] 

[8], [15], 
[39], [40] 

[19], 
[42], 
[43], 
[69], 
[72] 

 

1. Machine Learning: Machine Learning (ML) is 
extensively used across various applications such as 
predictive maintenance, risk assessment, and process 
optimization, showcasing its foundational role in enhancing 
manufacturing resilience. 

2. Deep Learning: Deep Learning (DL) is particularly 
prominent in complex tasks like image recognition for 
product inspection, fault detection, and diagnostics, due to its 
ability to interpret high-dimensional data and learn from it 
effectively. 

3. Image Processing: Image processing is critical for 
quality inspection and fault detection, with applications 
ranging from assessing final product defects to monitoring 
manufacturing processes in real-time. 

4. Reinforcement Learning: Employed for dynamic 
and complex decision-making tasks such as scheduling and 
motion planning, Reinforcement Learning allowing for 
adaptable and optimized operations in manufacturing plants. 

5. Miscellaneous AI Technologies: Other AI 
technologies, including various evolutionary algorithms like 
Genetic algorithms and computer vision algortihms in 
combination with neural networks, are applied to niche areas 
like device authentication, system optimization, and 
resilience modeling, contributing to the robustness and 
adaptability of manufacturing systems. Also Digital Twins 
are used for risk prediction, taking design decisions and 
management, creating virtual models that can simulate and 
analyze real-world manufacturing scenarios for improved 
decision-making and operator. However, Digital Twins are 
considered for this paper as composed systems and not as 
single technology. 

 AI Technology Utilization Across Use Cases 
Table VI, Part 1, illustrates the application of various 

AI technologies in the first four of nine identified use cases 
in manufacturing: Predictive Maintenance, Zero Defect 
Manufacturing, Scheduling, and Fault Detection. The table 
maps each AI technology — Machine Learning, Deep 

Learning, Image Processing, Reinforcement Learning, and 
Miscellaneous AI Technologies — to the relevant use cases, 
accompanied by references to specific studies. This table 
highlights the diverse roles that AI technologies play in 
enhancing different aspects of manufacturing operations. 

TABLE VI.  AI TECHNOLOGY UTILIZATION  
ACROSS USE CASES (PART 1) 

AI  
Technology 

Pr
ed

ic
tiv

e 
M

ai
nt

e-
na

nc
e 

Ze
ro
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ef

ec
t 

M
an
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ac

tu
-
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Sc
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F
au

lt 
D

et
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tio
n 

Machine 
Learning 

[1], [4], 
[28], [76] 

[13], [16], 
[51] 

[9], [45], 
[46] 

[14], [30], 
[35] 

Deep Learning [28], [76] [51], [63]  [23], [30], 
[34] 

Image 
Processing 

   [23], [24], 
[25], [26] 

Reinforcement 
Learning 

  [45], [75]  

Miscellaneous 
AI 

Technologies 

[1], [28], 
[76] 

[13], [16], 
[51], [63] 

[9], [46], 
[47] 

[14], [36], 
[37] 

TABLE VII.  AI TECHNOLOGY UTILIZATION  
ACROSS USE CASES (PART 2) 

AI  
Technology F

au
lt 

D
ia

gn
os

is
 

F
au

lt 
To

le
ra

nt
 

Sm
ar

t M
an

u-
fa

ct
ur

in
g 

Pr
od

uc
t 

In
sp

ec
tio

n  

Pr
og

no
st

ic
s 

&
 H

ea
lth

 
M

gm
t. 

Machine 
Learning 

[15], 
[31], [32] 

[10], 
[27], 
[39], 
[40] 

[7], 
[22], 
[65], 
[73] 

[23], 
[24], [25] 

[11], 
[42], 
[60], 
[69] 

Deep Learning [31], 
[32], [33] 

 [29], 
[65] 

[23], [77]  

Image 
Processing 

   [23], 
[24], 
[25], 

[26], [77] 

 

Reinforcement 
Learning 

  [67]   

Miscellaneous 
AI 

Technologies 

[15], 
[38], [53] 

[10], 
[27], 
[39], 
[40] 

[7], 
[20], 
[22], 
[73] 

[24], 
[25], [26] 

[11], 
[42], 
[43], 
[60], 
[69] 

 
Table VII, Part 2, continues the exploration of AI 

technology applications in manufacturing, covering the 
remaining five use cases: Fault Diagnosis, Fault Tolerant, 
Smart Manufacturing, Product Inspection, and Prognostics & 
Health Management. Similar to Part 1, it maps various AI 
technologies to these use cases and includes references to 
pertinent research papers. This table completes the 
comprehensive view of how AI technologies contribute to 
different functional areas within the manufacturing sector. 

IV. DISCUSSION 
In summary, AI's integration into manufacturing 

resilience is transformative, driving the sector towards more 
intelligent, efficient, and adaptable operations. The insights 
from this review not only highlight the current state of AI 
applications in manufacturing but also pave the way for 



future innovations and practical implementations in this field. 
Detailed, the reaseach questions can be answered as folloed: 

 RQ1: What are the specific use cases within each of the 
five phases of the resilience cycle where AI is applied in 
manufacturing? 

AI applications in manufacturing resilience are diverse 
and impactful. In the 'Prepare' phase, AI assists in predictive 
analytics and anticipatory measures. The 'Prevent' phase sees 
AI in predictive maintenance and risk assessments. In 
'Protect', AI technologies safeguard operations through 
Digital Twins and neural networks. During 'Respond', AI aids 
in managing disruptions through rapid fault detection and 
health monitoring. Finally, in the 'Recover' phase, AI 
facilitates efficient recovery through predictive maintenance 
and assisted self-healing mechanisms. See also table IV. Use 
case utilization Across resilience phases. 

 RQ2: Which AI technologies have been employed to 
implement the use cases for enhancing resilience in 
manufacturing? 

The predominant AI technologies in manufacturing 
resilience are Machine Learning and Deep Learning. 
Machine Learning is crucial for predictive maintenance, risk 
assessment, and process optimization. Deep Learning excels 
in complex tasks like image recognition for product 
inspection and fault diagnostics. Image Processing, 
Reinforcement Learning, and other AI technologies play vital 
roles in specific areas, contributing to the industry's 
robustness and adaptability. 

 RQ3: What are the anticipated benefits and positive 
impacts of integrating AI technologies for enhancing 
resilience in manufacturing? 

The integration of AI technologies in manufacturing 
resilience is expected to bring multiple benefits: 

1. Increased Efficiency: AI enables more efficient 
manufacturing processes through automation, 
predictive analytics and scheduling. 
2. Reduced Downtime: Predictive maintenance 
capabilities of AI minimize downtime by foreseeing 
and addressing potential failures in advance. 
3. Enhanced Adaptability: AI's data-driven insights 
facilitate adaptable responses to disruptions, improving 
the overall resilience of manufacturing operations. 
4. Quality Improvement: AI aids in maintaining high-
quality standards in production through advanced 
product inspection and fault detection techniques. 
5. Cost-Effectiveness: AI can lead to cost savings by 
optimizing resource utilization and reducing waste. 
6. Informed Decision-Making: AI's ability to analyze 
vast amounts of data supports better strategic and 
operational decisions. 

V. CONCLUSION 
This systematic literature review has rigorously 

analyzed the role of Artificial Intelligence (AI) in bolstering 
the resilience of the manufacturing sector across the five 
critical phases: Prepare, Prevent, Protect, Respond, and 
Recover. The convergence of AI with manufacturing 
processes emerges as a key enabler for transforming 

traditional practices into dynamic, intelligent systems capable 
of anticipating, withstanding, and rapidly adapting to 
disruptions. AI's predictive maintenance capabilities stand 
out as a cornerstone for preparation and prevention strategies, 
significantly reducing unplanned downtime and fostering a 
zero-defect manufacturing approach. The implementation of 
AI across various functions, from fault detection to recovery 
planning, illustrates a paradigm shift toward self-aware, self-
optimizing manufacturing ecosystems. As we step into an era 
of smart manufacturing, the integration of AI is not just 
enhancing the resilience of operations but is also redefining 
the competitiveness and sustainability of the manufacturing 
industry. 
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