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DM-YOLOv8: Cucumber Disease and Insect 

Detection using Detailed Multi-Intensity Features 

Abstract—In light of the prevalent pest and disease issues 

faced by greenhouse cucumbers, a staple vegetable during the 

winter season, this study introduces a detection method based on 

the enhanced YOLOv8s model. This method aims to provide 

technical support for the detection and classification of pests and 

diseases in cucumber agricultural production. The model 

integrates the ‘MultiCat’ module for multiscale feature fusion and 

employs the ‘C2fe’ and ‘ADC2f’modules to strengthen both 

spatial and channel attention. Additionally, the ‘Block2d’ function 

facilitates the choice between average pooling and attention-based 

spatial pooling. Channel fusion is achieved through additive and 

multiplicative operations, allowing the model to delve deeper into 

feature learning. Experimental results confirm that our approach 

outperforms the original YOLOv8s model in pest detection, 

particularly excelling in the identification of small-scale and 

overlapping afflictions. 

Keywords— ADC2f , C2fe, Component, MultiCat, Pest detection, 

Yolov8s 

I. INTRODUCTION 

In today's globalized world, e nsuring food safety and high 
yields has become a central issue in agricultural research. 
Cucumber is a member of the Cucurbitaceae family, which has 
90 genera and 750 species. It is one of the oldest cultivated 
vegetable crops and is grown in almost all temperate countries. 
It is a warm-loving, frost-tolerant plant that grows best at 
temperatures above 20°C [1]. Cucumber pests and diseases are 
one of the main reasons for the decrease in cucumber yield [2]. 
Outbreaks of agricultural pests not only affect crop production 
but also the use of pesticides not only causes ecological 
destruction but also further increases the risk of food safety [3]. 
Therefore, it is particularly important to develop a method that 
can detect cucumber pests and diseases in a timely and accurate 
manner. 

Traditional methods of detecting pests and diseases on 
cucumber leaves mainly rely on human visual recognition, that 
is, directly observing the morphology, texture, and color of 
leaves with the naked eye [4]. Although this method is simple to 
operate, its accuracy is affected by the differences in the 
observer's experience and knowledge, and it is highly subjective, 
often leading to misdiagnosis, causing irreversible losses to 
farmers. Therefore, in addition to being time-consuming and 
costly, it is difficult to achieve the precise detection 
requirements for cucumber leaf pests. This is difficult to 
implement in large-scale agricultural production. 

With the rapid development of technology, especially in the 
field of computer vision, deep learning provides a new direction 

for the identification and detection of pests and diseases in the 
agricultural field [5]. Against this background, object detection 
has become a core topic in computer vision research, aiming to 
accurately identify and locate specific objects in images. To 
achieve this goal, scholars have developed many innovative 
strategies. Among them, the one-stage (One-stage) and two-
stage (Two-stage) methods stand out and have become the two 
mainstream technologies in this field. 

Representatives of one-stage object detection algorithms 
include SSD (Liu et al., 2016) [6], RetinaNet (Lin et al., 2017) 
[7], YOLOv4 (Bochkovskiy et al., 2020) [8], YOLOv5 (Jocher 
et al., 2021) [9], DETR (Carion et al., 2020) [10], FCOS (Tian 
et al., 2019) [11], and YOLOX (Ge et al., 2021) [12]. In contrast, 
two-stage object detection algorithms such as R-CNN (Girshick 
et al., 2014) [13], Fast R-CNN (Girshick, 2015) [14], Faster-
RCNN (Ren et al., 2016) [15], Mask R-CNN (He et al., 2017) 
[16], and Cascade R-CNN (Cai and Vasconcelos, 2018) [17] 
have a longer computational process. 

Two-stage models first generate a series of candidate regions 
and then use a classifier to refine the classification of these 
regions. Although they are usually superior in accuracy, the two-
step process makes them relatively slow [18,19]. On the other 
hand, one-stage models directly predict bounding boxes and 
categories from feature maps without generating candidate areas, 
providing the advantage of real-time detection. However, this 
speed sometimes comes at the expense of accuracy. Considering 
the need to make the model more practical and suitable for 
deployment on mobile devices, we chose the YOLO model as 
our object detection algorithm. 

To solve the problem of low accuracy in small target 
detection of one-stage models, this paper proposes a new 
YOLOv8s model for cucumber pest identification and tests it on 
a newly built dataset. This study plans to adopt and improve the 
latest YOLOv8s model for the detection of cucumber pests and 
diseases. To compensate for the accuracy loss of lightweight 
models, we also adopted an attention mechanism to assign 
different weights to each part of the input feature layer, thereby 
more effectively extracting key features and improving 
classification performance. 

The main contributions of this paper are two-fold: 

• We propose a lightweight one-stage YOLOv8 model, 
referred to as the Detail and Multi-scale YOLO Network 
(DM-YOLO), built upon YOLOv8, for real-time 
cucumber pest and disease identification. Utilizing the 
MultiCat module by merging features of different scales, 
the model's detection capability for pests and diseases of 
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varying sizes on cucumbers is enhanced. We introduced 
the C2fe module, a modification based on C2f, as a new 
feature fusion method aiming to more effectively 
combine multi-scale features. With an attention 
mechanism based on adaptive average pooling, we 
constructed a new module named AD-C2f, which 
intensifies the model's focus on crucial features, thereby 
increasing detection accuracy and overall model 
performance. 

• We extracted a portion of data from the ai-hub's  
Integrated Plant Disease Induction Data public dataset to 
construct a new cucumber pest and disease dataset. To 
ensure data quality, we manually re-annotated the leaves 
in each image and carefully filtered the original images. 
After eliminating some unorganized data, we 
concentrated on two main cucumber afflictions: downy 
mildew and powdery mildew, culminating in this 
optimized new dataset. 

 

II. RELATED WORKS 

A. Traditional Machine Learning Methods 

Traditional disease identification methods in machine 
learning typically rely on manually extracting designed features 
from images, such as color, texture, and shape. Classifiers like 
Support Vector Machines (SVM), Decision Trees, or K-Nearest 
Neighbors (KNN) are then employed to distinguish between 
healthy and damaged plants. 

For instance, Ebrahimi et al. (2017) proposed an insect 
detection system based on SVM, successfully applied in 
strawberry greenhouse crop canopy images with an error rate of 
less than 2.25% [20]. Mondal et al. (2017) combined image 
processing and soft computing techniques for a disease 
recognition system, achieving high-accuracy disease 
classification in okra and bitter gourd leaves by selecting 
specific morphological features [21]. 

Additionally, Xu et al. (2020) used BP neural networks and 
random forest models to detect damage from forest caterpillars, 
with the random forest model outperforming and emphasizing 
the importance of balanced sample data [22]. Amirruddin et al. 
(2020) assessed chlorophyll sufficiency levels in mature oil 
palms using hyperspectral remote sensing and achieved high-
accuracy chlorophyll classification, particularly on younger 
leaves, through a random forest classifier [23]. 

However, traditional machine learning methods may 
struggle to capture complex patterns in high-dimensional and 
large-scale data, leading to suboptimal performance. They often 
require extensive preprocessing and feature engineering, adding 
to development time and cost. In contrast to the adaptive 
learning capability of deep learning, traditional methods may 
underperform when facing data changes and uncertainties. In 
summary, while traditional machine learning methods may 
excel in specific situations, they might not be suitable for tasks 
requiring the capture of intricate patterns and relationships in 
high-dimensional and large-scale data. 

 

B. Deep Learning Methods 

Deep learning offers significant advantages in crop pest and 
disease identification and classification. In contrast to traditional 
machine learning methods, deep learning automatically extracts 
features from data, eliminating the need for manual feature 
design and accommodating complex, high-dimensional data. 
Various advanced deep learning models, including 
Convolutional Neural Networks and pre-trained models, have 
proven successful in diverse crop pest and disease identification 
tasks. 

Sethy et al. (2020) effectively identified four rice leaf 
diseases by combining deep convolutional neural networks with 
SVM, achieving an impressive F1 score of 0.9838 [24]. Yin et 
al. (2022) developed a grape leaf disease identification method 
using an improved MobileNetV3 model and deep transfer 
learning, achieving a recognition accuracy of 99.84% with a 
modest computational footprint and dataset size (30 MB) [25]. 

Sankareshwaran et al. (2023) introduced the Cross Enhanced 
Artificial Hummingbird Algorithm based on AX-RetinaNet 
(CAHA-AXRNet) for optimizing rice plant disease detection, 
outperforming existing methods with an accuracy of 98.1% [26]. 
Liu Shiyi et al. (2023) presented the DCNSE-YOLOv7 deep 
learning algorithm, enhancing the detection accuracy of 
cucumber leaf pests and diseases, particularly for minute 
features on early-stage diseased leaves. This algorithm exhibited 
significant improvements over mainstream object detection 
models, supporting precise detection of cucumber leaf pests and 
diseases [27]. 

Additionally, Yang et al. (2023) introduced a tomato 
automatic detection method based on an improved YOLOv8s 
model, achieving an mAP of 93.4%. This method meets real-
time detection requirements and provides technical support for 
efficient and accurate operations of tomato-picking robots [28]. 
Collectively, these studies highlight the continuous optimization 
and improvement of deep learning models, demonstrating 
remarkable success in crop pest and disease detection and 
identification. 

 

III. MATERIALS AND METHODS 

A. Materials 

The data required for this study was sourced from ai-hub 
translated as "Integrated Data on Plant Disease Induction" public 
dataset (Figure 1). To construct a dataset specifically targeting 
cucumber pests and diseases, we extracted a subset of data from 
this collection and deeply integrated it. In order to ensure the 
model's broad adaptability and robustness, we manually 
annotated each leaf in the images and meticulously filtered the 
original photos. After removing some irregular data, our primary 
focus was on the two prevalent ailments of cucumbers: downy 
mildew and powdery mildew. We selected 2,000 images of 
cucumber pests and diseases to form a new dataset. 



 

Fig. 1. Example of plant leaf disease dataset 

The entire dataset was split in an 8:2 ratio for training and 
validation sets, respectively. The specific data distribution is 
illustrated in Figure 2. 

 

 

Fig. 2. Dataset distribution results. The dataset is mainly divided into train, 

val,, as shown on the horizontal axis. The vertical axis mainly represents the 

number of images in each dataset. 

B. Standard YOLOv8 

YOLOv8 is a part of the YOLO lineage, not only offering 
the latest State Of The Art (SOTA) models but also 
incorporating a multitude of innovations and optimizations to 
enhance performance and adaptability. Firstly, this model 
introduces a variety of resolution and scale target detection 
networks, thoroughly considering the demands of different 
scenarios. Secondly, from the backbone network to the head 
structure, YOLOv8 underwent a series of meticulous fine-tuning, 
including adopting a gradient flow enriched C2f structure and 
introducing a decoupled head structure, making classification 
and detection more independent and efficient. Moreover, it 
transitioned from an Anchor-Based structure to Anchor-Free, 
aligning with a major trend in recent years. On the loss function, 
YOLOv8 combined the TaskAlignedAssigner and Distribution 
Focal Loss, these novel strategies assist the model in achieving 
more precise detection across various targets. Lastly, in terms of 
data augmentation, the model also adopted effective strategies, 
such as disabling Mosaic augmentation in the final training 
phase. Figure 3 illustrates the architecture of the YOLOv8 
model. 

   

Fig. 3. Standard yolov8 model 

 

C. Proposed model 

To accommodate the detection of small targets, we proposed 
and refined the YOLOv8 model as depicted in Figure 4, where 
one of the c2f modules was altered to an AD-c2f module. A 
multi-scale feature fusion module, termed Mult module, was 
constructed. By extracting and merging information from three 
distinct levels of the backbone, the model is capable of capturing 
and utilizing features from multiple scales and levels. Further 
optimization and extension were conducted on the c2f basis, 
forming a C2fe module. Besides conducting feature extraction 
in the channel dimension, this module also performs in-depth 
feature processing spatially. This dual operation mode on two 
dimensions ensures a comprehensive and profound feature 
extraction by the model. 

 

 

Fig. 4. Proposed model (DM-YOLOv8) 
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1) MultiCat Module 
An improved model for cucumber disease and pest detection 

addresses challenges like varying lighting conditions and object 
occlusions through a specially designed module called MultiCat. 
This module employs meticulous multi-scale feature processing 
and fusion to enhance the model's ability to detect smaller target 
diseases and pests on cucumber leaves. The MultiCat module 
decomposes input feature maps into three scaled maps (L, M, S) 
for capturing disease features from various angles. Adaptive 
pooling and interpolation techniques are applied to explore 
global and regional disease features, while channel 
concatenation operation fuses the scaled feature maps into a 
unified output, ensuring rich local disease feature details are 
preserved. 

 

2) AD-C2f Module 
An ADC2F module is introduced to enhance the detection of 

downy mildew and powdery mildew during cucumber 
cultivation. Combining attention mechanisms and depthwise 
separable convolution, the model focuses on crucial elements for 
accurate disease identification. The attention mechanism 
enables selective concentration on infected areas, disregarding 
irrelevant background noise, contributing to improved detection 
accuracy. The ADC2F module decomposes input features, 
applies adaptive average pooling and convolution layers to two 
separate parts, and uses a sigmoid activation function to obtain 
adaptive weights. This adaptive filtering aims to emphasize 
useful features while suppressing unnecessary or interfering 
elements in the identification process. 

 

IV. EXPERIMENTS AND ENVIRONMENT 

A. Environment setup 

The experimental operating system used in this study is 

Windows 10, with PyTorch serving as the framework for 

developing the deep learning model. The table 1. provides 

specific details regarding the experimental environment. 

TABLE I.  EXPERIMENTAL ENVIRONMENT CONFIGURATION 

 Configuration 

CPU AMD Ryzen 5 3600 6-core 

GPU NVIDIA GeForce RTX 3060 

GPU memory 32GB 

Operating systems Windows 10 

Deep learning framework Pytorch1.9.2 

 

Training Parameter Settings: The image input size is 
640×640, batch size (Batch_size) is 16, multi-threading is set to 
4, the initial learning rate is 0.01, with a total of 120 training 
iterations (Epochs). The specific parameter settings are shown 
in Table 2. 

 

B. Experimental results 

We compared the improved model with the original YOLOv8 

model to evaluate whether our improvements could enhance the 

performance of the model. To showcase the detection results of 

the algorithm proposed in this study, we randomly selected 

images from the test subset for comparison. The specific 

comparison results are shown in Table 3, and the visual 

outcomes of the selected images are illustrated in Figure 8. 

TABLE II.  PERFORMANCE COMPARISON RESULT OF YOLOV8 

AND DM-YOLOV8 FOR DIFFERENT CLASSES AND METRICS 

 Class 
Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

Param 

(MB) 

FPS 

(m/s) 

Yolov8 

All 0.834 0.794 0.874 

11.47 181.8 A3 0.875 0.778 0.903 

A4 0.793 0.81 0.845 

DM-

Yolov8 

All 0.842 0.815 0.8825 

12.19 178.6 A3 0.851 0.83 0.910 

A4 0.834 0.80 0.855 

 

The DM-Yolov8 model demonstrates superior performance 
over the standard YoloV8 model in key metrics crucial for 
cucumber pest and disease detection. With a higher recall of 0.81 
versus 0.76, DM-YoloV8 effectively reduces the likelihood of 
missing actual pest and disease instances. Its MAP50 score of 
0.90 in the "A3" category, compared to Yolov8 is 0.89, reflects 
better accuracy and precision. Despite a slightly lower frame rate, 
the significant improvements in recall and MAP50, along with 
consistent performance across various categories, underscore A-
Yolov8 is enhanced suitability and reliability for cucumber pest 
and disease detection tasks, making it a preferable choice over 
the original Yolov8 model. 

During the training process, we are concerned not only with 
the model's final performance, but also with the training and 
validation process to ensure the model is progressing in the right 
direction. For this purpose, we decided to plot some key metrics 
during the training and validation process, so we could have a 
visual understanding of the model's learning situation, as shown 
in Figure 8. 

 

Fig. 5. Cucumber Disease Detection and Algorithm Comparison 

In Figure 5, our investigation revealed that the enhanced 
DM-YOLOv8 model exhibits notable performance 
enhancements in the detection of foliar diseases, specifically 
Powdery Mildew and Downy Mildew. When benchmarked 
against the baseline YOLOv8s model, the DM-YOLOv8 variant 



demonstrated superior accuracy in bounding box delineation 
and augmented confidence scores, signaling a refined capability 
for precise pathogen feature recognition. 

In particular, the DM-YOLOv8 model consistently yielded 
elevated confidence scores across a multitude of test instances, 
denoting a heightened proficiency in differentiating healthy leaf 
tissue from that afflicted by disease. Despite these advancements, 
the model occasionally generated detection boxes in healthy 
tissue zones, indicative of potential false positives. Furthermore, 
there were instances where prominent disease manifestations 
were not encapsulated within detection boxes, pointing to 
possible false negatives. 

The performance of the DM-YOLOv8 model also varied 
when processing images characterized by intricate backgrounds 
and overlapping leaf structures. This variability suggests that the 
model's robustness in complex visual environments may require 
additional refinement. Notably, the model exhibited uncertainty 
in regions of leaf margin and vein convergence, likely attributed 
to the feature representation similarities between these areas and 
diseased segments. 

Summarily, while the DM-YOLOv8 model demonstrates a 
distinct advantage in the domain of leaf disease detection, there 
is an evident imperative for enhancement in minimizing false 
positives and fortifying detection consistency in multifaceted 
scenarios. Consequently, this necessitates the development of 
further optimization strategies to align the model's capabilities 
with the pragmatic demands of accurate disease detection. 

 

C. Comparative Experiments 

To demonstrate the superiority of our proposed YOLO 
model in image classification tasks, we compared it with four 
popular image classification models. The experimental results 
are shown in the Table 3. 

TABLE III.  PERFORMANCE COMPARISON RESULTS OF EXISTING 

MODELS 

 
Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

Param 

(MB) 

FPS 

(m/s) 
Yolov5 84.2% 81.0% 87.6% 26.76 153.84 

Retinanet 90.63% 60.40% 84.17% 144.84 25.93 

SSD 85.16% 30.77% 56.45% 100.27 65.8 

Faster-RCNN 43.1% 86.58% 86.58% 108 11.94 

DM-yolov8 84.2% 80.8% 88.2% 12.2 178.57 

 

In our comparative analysis, we evaluated the DM-YOLOv8 
against four leading-edge image classification models: YOLOv5, 
RetinaNet, SSD, and Faster R-CNN. Data delineated in Table 4 
corroborates that DM-YOLOv8 not only showcases exceptional 
real-time processing capability but also establishes a significant 
equilibrium among precision, recall, and mean Average 
Precision (mAP). 

While YOLOv5 exhibited a formidable overall performance 
with an mAP of 87.6%, DM-YOLOv8 surpassed this 
benchmark, registering an mAP of 88.1%, and concurrently 
demonstrated a substantial increase in processing speed, with a 
frame rate (FPS) of 178.57, in comparison to YOLOv5's 153.84. 
This positions DM-YOLOv8 as a more apt choice for real-time 

applications where both precision and speed are of paramount 
importance. 

RetinaNet, although reaching a precision of 90.63%, 
displayed deficiencies in recall and FPS. In contrast, DM-
YOLOv8 offered a more balanced configuration with a 
significantly elevated recall rate of 80.6% and an FPS more than 
six times higher. SSD, with its FPS at 65.8, lagged in terms of 
mAP and recall, metrics critical for robust object detection. 

Faster R-CNN, with a high recall rate of 86.58%, 
outperformed DM-YOLOv8 in this respect. However, when 
juxtaposed with the larger model size of Faster R-CNN 
(108MB), the considerably smaller size of DM-YOLOv8 
(12.2MB) highlights the efficiency and optimization of our 
model, rendering it highly suitable for deployment in 
environments with limited computational resources. 

 

V. CONCLUSIONS 

This study delved into the detection of diseases and pests in 
cucumbers within greenhouse environments, successfully 
proposing an optimized YOLOv8 algorithm tailored for this 
purpose. Despite the reduced detection accuracy due to 
interference from complex backgrounds, the introduction of 
specific modules significantly enhanced the algorithm's feature 
extraction and representation capabilities. The integration of the 
C2fE and AD-C2f modules, in particular, collectively 
strengthened the network's feature extraction prowess, markedly 
boosting the model's detection capabilities. Additionally, in 
cucumber disease and pest detection tasks, this model 
demonstrated a higher recall rate and mean Average Precision 
(mAP) with an extremely high processing speed, while 
maintaining a relatively small model size compared to other 
algorithms. These attributes make it an ideal choice for fast and 
accurate real-time object detection tasks. 

In future research, we plan to enhance feature extraction 
accuracy and detection robustness by introducing more 
advanced network structures, increasing inter-layer connections, 
and utilizing deeper networks. We aim to expand the training 
dataset and adjust and test the algorithm to cater to different 
types of crops. Integrating the algorithm with hardware 
platforms such as drones and automated mobile robots, we 
intend to develop an automated and intelligent disease 
monitoring system for on-site testing and to optimize the model's 
real-time application performance. Through these research and 
development plans, we anticipate not only scientific progress but 
also significant technological transformation and industrial 
advancement in practical applications. 
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