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Abstract—In this paper, we present an anti-jamming strategy
based on an actor-critic model of reinforcement learning, which
uses sequence information as model input to improve learning
performance compared to the conventional structure. Conse-
quently, in scenarios with enemy’s partial-band jamming, we
demonstrate that frequency hopping for evasion can be effectively
performed by determining the frequency channels based on the
actor-critic model, thereby efficiently mitigating the effects of
enemy’s jamming.

Index Terms—deep learning, reinforcement learning, actor-
critic, partial-band jamming, anti-jamming, frequency hopping

I. INTRODUCTION

Effectively mitigating the effects of partial-band jamming is
important for the successful communication of allied forces in
electronic warfare (EW) environments. In EW, the allied forces
are faced with the problem of having no prior information
about the patterns and timing of enemy’s jamming [1]. In this
paper, we apply Reinforcement Learning (RL) to develop an
anti-jamming (AJ) policy that adapts to enemy’s jamming pat-
terns through interactive experiences in an EW environment,
aiming to address the aforementioned problem. Additionally,
we propose an AJ model that applies sequence information
to improve adaptability to enemy’s jamming patterns, and
compare the AJ performance of the proposed method with the
conventional method. Consequently, this paper demonstrates
that RL-based AJ techniques can effectively develop strategies
to counter the enemy’s jamming patterns, while also providing
insights into the application of RL methods.

II. BACKGROUND

A. Reinforcement Learning

RL is a crucial aspect of machine learning where an agent
learns to make decisions by interacting with an environment.
Key components of RL include an agent, an environment,
actions, states, and rewards. The agent learns a policy which
is a strategy for choosing actions based on states, to maximize
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the total reward over time. This approach is also effective
in scenarios where the environment model is unknown or
complex [2]. Recent work has included the creation of a RL
environment for EW scenarios and the application of deep RL
to counter jamming by interacting with the environment [3],
[4].

B. Actor-Critic Method

The actor-critic (AC) method is an important approach
in the field of RL, which combines the concepts of value-
based and policy-based strategies. This method involves two
key components: the actor who is responsible for making
decisions (choosing actions), and the critic who evaluates
the actions taken by the actor. The actor updates its policy
based on the feedback from the critic, allowing for more
efficient and effective learning. This approach is particularly
advantageous in complex decision-making scenarios where the
action space is large and dynamic. The AC model’s ability
to simultaneously learn a policy (actor) and a value function
(critic) provides a balanced mechanism for more resilient
navigation and adaptation to new and complex environments
[2], [5]. The process diagram of the AC method is shown in
Fig. 1. In this diagram, Vπ(s) represents the value function
which denotes the value of state s when following the current
policy π.

Fig. 1. Process diagram of actor-critic method



Furthermore, the agent observes the current state st of the
environment at time t, and selects an action at to perform
through the actor network, interacting with the environment.
Based on the results of this interaction, a reward rt and the
next state st+1 are obtained. The critic network is then used
to estimate the value of the current state, and the temporal
difference (TD) error is calculated by (1) with the estimated
value of the next state st+1, which is used to adjust the policy
of the actor network.

δ = rt + γV (st+1)− V (st), (1)

∆θ = α · δ · ∇θ log π(at|st, θ). (2)

Here, γ is the discount factor, and (2) represents the policy
gradient method for updating the policy of the actor network
through the TD error of (1). Consequently, the AC approach
represents the process of stable and effective policy learning
by improving the policy of the actor network using the critic
network [6].

III. PROPOSED AJ SCHEME

The proposed RL-based AJ strategy derives adaptive and
effective AJ results through interaction with the pre-configured
RL environment. Therefore, this section describes the learning
environment of the proposed technique and presents a method
that exploits sequence information to improve performance in
complex environments.

A. Environment of RL-based AJ

The architecture of the RL environment for training the
AJ policy is as follows. It is assumed that the transmission
frequency band is divided into N frequency channels, each of
which can be in either a jammed or a clear state. Considering
an environment where the enemy’s jamming patterns are
unknown, in the initial time steps, the enemy’s jamming targets
random channels out of N , and the direction of the sweeping
pattern is also randomly determined. In this scenario, the goal
of the allied forces is to observe the previous channel state and
select a current channel that is clear. Therefore, the size of the
environment state and the size of the agent’s action space are
both N , as expressed in (3) and (4).

st = {(f1, x), (f2, x), · · · , (fn, x)}, (3)

at = {f1, f2, · · · , fn}, (4)

rt(st, at, st+1) =


−1, if st+1 = (fn, 1), at = fn.

+1, otherwise
(5)

In (3) and (4), n ranges from 1 to N , fn is separated frequency
channels, x ∈ {1, 0} represents the state of the frequency
channel, where it is 1 in a jammed situation and 0 in a
clear situation. and reward function is represented by (5).
If rt = −1, it indicates that AJ strategy is failed to avoid
jamming, whereas rt = +1 signifies a successful avoidance
of jamming.

Fig. 2. Environment configuration

B. AC-based AJ

The configured jamming environment is shown in Fig. 2.
With such an environment configuration, we train the AJ
policy agent based on the AC method.

The multi-layered perceptron (MLP) structure of the actor
network is shown in Fig. 3. The size of both input and output is
equal to the size of the state space, N , and the hidden network
consists of 24 nodes each. The nodes between networks are
fully connected, and the activation function applied is rectified
linear unit (ReLU). The output is the softmax result of N
nodes, which represents the policy of the agent (i.e., the
action probability density function). The MLP structure of
the critic network is shown in Fig. 4. Similar to the actor
network, the input size of the critic network is N , and the
hidden network consists of 24 nodes each, using ReLU as
the activation function. The output is the estimated value of
the state information Vπ(s), which is the input to the critic
network.

Fig. 3. Actor network architecture

Fig. 4. Critic network architecture



C. Improved Model through Sequence Information

In this paper, we not only propose an AJ strategy based on
the AC method, but also configure the model to have better
adaptability to changes in jamming patterns by incorporating
sequence information at the input layer of the network. The
existing model uses the state of N channels as input data to
the AC model, which adapts to the enemy’s jamming patterns
over episodes to select effective AJ channels. However, when
the enemy’s jamming patterns change frequently over a short
period of time, it becomes difficult to improve the performance
of the proposed model. Considering this problem, to improve
the adaptability of the AJ model, the input data is configured
and applied as sequence information consisting of bundles
of previous time steps. Sequence information stores state
information from the most recent time steps up to a given
window size. While the effect of sequence information is less
significant at time steps smaller than the window size, as time
progresses it becomes more effective in smoothly representing
state changes through sequence information.

IV. SIMULATION RESULTS

In this section, we present the performance of the proposed
AJ technique in an environment where the enemy’s partial-
band jamming ratio is 50%, as well as the performance
results with the application of the sequence information. The
simulation parameters are given in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Values

Number of channels, N 10

Window size of sequence information 5

Number of episodes 100

Number of time steps 200

Learning rate (actor) 15× 10−4

Learning rate (critic) 15× 10−4

Discount factor, γ 0.99

Smoothing factor, α 0.2

Fig. 5. Moving average reward of AJ policies

The AC based-AJ models present reward results through the
exponential moving average (EMA) with a smoothing factor
of α, and the EMA at time t is represented by (6).

EMAt = α ·R+ (1− α) · EMAt−1 (6)

Here, R is the reward of each episode (i.e., instant reward of
the simulation). The performance of the proposed AJ model
in an environment with multiple sweeping jammers is shown
in Fig. 5. Here, the random AJ policy selects an arbitrary AJ
action from among N actions. The following AJ policy is one
which monitors the jamming pattern changes of a particular
jammer and adapts the AJ actions according to the pattern
changes. The proposed AC-based AJ model shows superior
moving average reward scoring results compared to other AJ
policies, even when the number of jammers is 50% of the
total. It also shows a tendency to reach the maximum reward
value of 200 as the episodes progress. Therefore, it can be seen
that this is an effective AJ strategy model in a multi-jammer
environment.

Fig. 6. Performance of the proposed AJ model in complex environment

Fig. 7. Performance of the proposed AJ model with sequence information
in complex environment

To highlight the performance by adopting the sequence
information in the proposed model, a dynamic environment
was constructed where the jammer’s jamming patterns change



over time steps. This represents a situation that is more difficult
to adapt to than the original environment, and takes into
account the increased complexity of the jamming. Figure
6 shows the reward performance in the dynamic jamming
environment, and Fig. 7 shows the results of the model
with the sequence information. Due to the dynamic jamming
characteristics of the environment, the moving average result
(orange line) in Fig. 6, which represents the result of the simple
proposed model, shows a lower score in the multiple jammer
environment. On the other hand, Fig. 7 which includes the
sequence information in the proposed model, shows that it
achieves higher rewards in fewer episodes (i.e. faster learning
of the correct policy). In addition, the simple proposed model
shows unstable reward results during learning, while the model
incorporating the sequence information shows more stable
learning. Therefore, incorporating the sequence information
into model training can improve the speed and the stability of
learning.

V. CONCLUSION

In this paper, we proposed an RL-based AJ policy that de-
rives AJ strategies against enemy’s frequency channel jamming
in EW environments. We have compared the proposed model
with some AJ strategies and confirmed its effectiveness in
avoiding the jamming in a sweeping jamming environment.
Considering more complex environments, we used the se-
quence information as input to the AJ model to ensure perfor-
mance against dynamic jammers. The AJ model incorporating
sequence information demonstrated resilience against dynamic
jammers, confirming that the model proposed in this paper is
superior and can adopt optimal AJ strategies. In future work,
we plan to combine the proposed model with Long Short-
Term Memory (LSTM) to enhance adaptability to changes in
jamming patterns. This approach will discuss the application
of RL and LSTM models in EW environments, presenting
advancements towards a more secure wireless communication
environment for allied forces.
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