
Abstract— The 6th Generation (6G) networks are now under
development. The 6G will revolutionize the cellular networks more
intelligently. In 6G era, we expect much higher network requirements
including massive network traffics, huge numbers of devices,
extremely low latency, low energy consumption and so on. A
metaverse is one of key applications in 6G. Wireless techniques are
directly related to performance of a metaverse application. The
metaverse application requires both a high throughput and a low
latency. The condition is more challenging than 5G. In this paper, we
investigate dynamic resource allocation for 6G metaverse. We
formulate the resource allocation problem for metaverse as the
Markov decision processes (MDP) and solve the resource allocation
problem using deep reinforcement learning (DRL). The main
contributions of this paper are summarized as follows: We optimize
the resource allocation for both a high throughput and a low latency.
We adopt a sparse reward function of the reinforcement learning in
the system model. It is more realistic because we can check whether
or not the resource allocation scheme satisfies the requirements after
completing the packet transmission.

Index Terms— 6G, Metaverse, Resource allocation, Machine
learning, Deep reinforcement learning, etc.

I. INTRODUCTION

HE 6TH Generation (6G) networks are now under
development. The 6G will revolutionize the cellular
networks more intelligently. In 6G era, we expect much

higher network requirements including massive network
traffics, huge numbers of devices, extremely low latency, low
energy consumption and so on. They will be characterized by
connectivity solution with ultra-low latency, ultra-high speed,
hyper-connectivity, and super-intelligence. In order to satisfy
the high-level network requirements, 6G networks will
accommodate new technologies such as artificial intelligence,
open RAN, Terahertz communication, Integrated Sensing and
Communication, Reconfigurable Intelligent Surface, and so
on. A new application will be possible to operate in 6G
networks. A metaverse as one of key 6G applications can be
defined as 3-dimensional (3D) virtual space that can be
implemented by multiple technologies. In the 3D virtual space,
we will be able to collaborate, learn, or play. The key
techniques to implement a metaverse are virtual reality,
augmented reality, digital twin, artificial intelligence, Internet
of Things (IoT), blockchain, brain-computer interfaces, and so
on. Among them, wireless techniques are highly related to
quality of service (QoS) and quality of experience (QoE). They
are directly affecting the performance of an interactive

experience system. They are related to the data exchange and
model accuracy. In order to connect the virtual world and the
real world and provide users with immersive experience, we
should maintain a reliable and accurate connectivity while
saving computing and communicating costs. For doing this, it
is a key research challenge to optimize computing and radio
resource in wireless networks. The resource optimization
allows us to employ computing and communicating resources
maximizing/minimizing the objective functions (Ex. latency,
energy efficiency, complexity, or others for the given
metaverse model) under the given constraints.
 When deploying 6G networks, we should consider distribution
and allocation of radio and computing resources. In particular,
with the growing needs for high throughput applications and
the limited radio resource to satisfy them, it is a key research
challenge of 6G systems to manage network traffic and find
optimal radio resource allocation while alleviating the network
traffic congestion, satisfying the latency sensitive requirement,
and supporting a better QoS. As machine learning techniques
are widely adopted in wireless systems, there are many
attempts to adopt them to resource allocation and scheduling
and improve the performance. Among machine learning
techniques, the reinforcement learning (RL) solves sequential
decision-making problem formulated in a Markov decision
process (MDP). The elements of RL are policy, reward, value,
model. Their role can be simply explained as Policy (what to
do), Reward (what is good or bad), Value (what is good
because it predicts reward), and Model (what follows what,
Optional element) [1]. The RL can learn from the errors and
correct by iteration. Thus, it works very well to solve complex
sequential decision-making problems. However, it requires a
huge training data and high computational complexity. The
deep reinforcement learning (DRL) combines reinforcement
learning and deep learning. In many sequential decision-
making problems, the states are expressed in high dimensional
components. Thus, it is not easy to solve and the complexity is
very high. In DRL, the agent embedded neural network
approximates a state-value function or policy function in a Q
learning framework. It allows us to solve the complex
sequential decision-making problem easily. The RL can be
regarded as one of promising methods to optimize resource
allocation block in the orthogonal frequency-division multiple
access (OFDMA) based wireless systems.
 There are a lot of research works to optimize the resource
allocation blocks or adopt machine learning techniques to

Dynamic Resource Allocation Using Deep
Reinforcement Learning for 6G Metaverse

Haesik Kim

 VTT Technical Research Centre of Finland
P.O. Box 1100, FI-90570 Oulu, Finland

haesik.kim@vtt.fi

T

resource allocation problems. In [2], the authors predict
incoming traffics and show us the tradeoff relationship
between enhanced mobile broadband (eMBB) data rate and
ultra reliable low latency communications (URLLC) latency.
In [3], the authors proposed a learning mechanism to improve
the coordination in the open radio access network (O-RAN)
and show us an optimized resource allocation in the radio
access network. In [4], the authors proposed a flexible resource
allocation for the slicing in order to reduce the number of active
metro nodes. In [5], the authors proposed a learning-based
resource allocation to share the bandwidth between different
network slices. In [6], the authors proposed an online learning
method for resource allocation and improve computational
efficiency in cloud networks. In [7], the authors formulated a
stochastic mixed integer nonlinear programming to jointly
optimize task offloading, resource allocation and scheduling.
In [8, 9], the RL is adopted to solve resource allocation
problem in wireless systems. The Q learning based RL is used
to find an optimal policy by interaction with the environment.
The Q learning converges slowly and occurs the explosion of
action state space.
 The main contributions of this paper can be summarized as
follows:
(1) The resource allocation problem for 6G metaverse
applications targeting both a high throughput and a low latency
is formulated and solved.
(2) The sparse reward as more practical condition is considered
in the model of deep reinforcement learning.
(3) The performances of the proposed method are evaluated.

The remaining parts of this paper are as follows: In section
II, system model is defined. In section III, the resource
allocation for 6G metaverse application is formulated in MDP.
The proposed method is described. In section IV, numerical
analysis is included. Section V contains the conclusion and
summary.

II.SYSTEM MODEL

 We consider OFDMA based downlink single cell model as
shown in figure 1. A gNodeB (gNB) covers a set U of mobile
users (or User Equipment (UE)) 𝑢 ∈ 𝑈 that are stationary.
They are uniformly deployed in the range of the gNB. The set
U is composed of metaverse application users requiring both a
high throughput and a low latency. The 3GPP 5G NR [10]
supports the numerology allowing us to have flexibility and
adaptivity of the transmissions in terms of different use case
scenarios. It enables us to adopt different frequency bands,
symbol duration, latency and so on. A resource element (RE)
is the smallest element of the resource grid. A resource block
(RB) is defined as 12 consecutive subcarriers. A resource block
group (RBG) consists of a set of consecutive resource blocks.
The lengths of frame and subframe are 10 ms and 1 ms,
respectively. The number of slots in one subframe varies in
terms of numerology. The number of OFDM symbols in one
slot is 14 OFDM symbols for normal cyclic prefix. One
resource grid is assigned for one antenna port and numerology.
We define the total number of resource blocks 𝑁𝑅𝐵

𝐷𝐿 for
downlink transmission.

Figure 1 System model.
 Since a mobile user requires a metaverse application,
connectivity with both a high throughput and a low latency
transmission is required. The 3GPP adopted adaptive
modulation and coding to achieve a high throughput and define
an optimal combination of modulation and coding scheme
(MCS) in terms of channel quality [10]. It enables us to
transmit data packets adaptively and guarantee reliability. In
this system model, we assume that the gNB obtains channel
quality indicator (CQI) via uplink control channel and uses a
link adaptation. The data traffics of UEs are queued in the
transmission buffer at the gNB. The scheduler of the gNB
performs a resource allocation in the transmission buffer. We
assume that the traffic model is constant and the queuing delay
is trivial.

III. DEEP REINFORCEMENT LEARNING AND PROPOSED
METHOD

A. Problem Formulation and Elements Definition of Deep
Reinforcement Learning
 The purpose of the dynamic resource allocation for metaverse
applications is to determine a radio resource block allocation
of mobile users that maximizes the probability of achieving the
total data volume VG and the probability of achieving the end-
to-end (E2E) latency at the time horizon T. The dynamic
resource allocation strategy is to find the optimal solution of
the following multi-period and multi functions optimization
problem:

max
𝑎(𝑡),𝑡<𝑇

𝑃(𝑉(𝑇) ≥ 𝑉𝐺) (1)

and
max
𝑡<𝑇

𝑃(𝐷(𝑇) ≤ 𝐷𝐺) (2)

where V(T) is the final data volume, D(T) is the final E2E
latency, DG is the target total latency, and a(t) are the possible
actions and resource allocations at time t. We will use DRL to
solve the problem (1) and (2). The purpose of DRL is to train
an agent to complete a task within an environment. They
should be modelled by the Markov decision processes. The
MDP is a stochastic decision-making tool and allows us to

: Base station/gNB : Mobile devices/UEs

UE 1 Packets UE K Packets

…

Multiplexing

Scheduler

RLC Layer
MAC Layer
PHY Layer

Decision

Resource allocation process
at gNB

describe an environment of reinforcement learning. It is useful
for modelling decision making problems. Since the system
model has sequential actions stochastically, we can formulate
our problem as the MDP. In the system model, the gNB adopts
the deep reinforcement learning. In order to solve the problem
using DRL, you can define the elements of DRL in the MDP
as follows: The states are data volume at the time period t. The
actions are resource block weights in terms of modulation
order for dynamic transmission strategy. The rewards are the
feedbacks about how well the action contributes to the task to
achieve the goal. The agent is the component to choose the
actions and train for completing the task. The DQN agent is
used. The environment is the evolution model simulates the
next observation after deciding an action and calculates its
reward. The environment allows the agent to have a state. The
agent selects an action. Depending on the action, the agent
receives a positive or negative reward from the environment
along with the new state. These steps are repeated until
objective function is satisfied. Namely, the agent learns the
optimal behaviour through a trial-and-error approach under the
given environment without human interaction. What we find it
in unknown environment is the main advantage of the RL. The
main purpose of the RL is to find an optimal policy 𝜋 that has
a maximum cumulative reward. The policy function is
mapping each state to the bast actions based on the
observations from the environment. In order to train a policy
function, we need to evaluate the policy to take actions, apply
them to environments, and then obtain the observation and
rewards. The learning algorithm iteratively performs this
process and updates the parameters of the policy. The learning
algorithm enables us to find an optimal policy. Figure 2
illustrates the DRL process.

Figure 2 Elements of Deep Reinforcement Learning.
 We explain the components of DRL in details as follows:
Definition of states s(t): The states represent the data volume
V(t) at the time t and have two elements as s(t) = [V(t), t]. We
can create a grid of data volume value for all time periods. The
grid is composed of time t on the columns and data volume
value V on the rows. We can represent the data volume
evolution. The state is represented by a node on the grid. The
state transition is modelled by

𝑉(𝑡 + 1) = 𝑉(𝑡)𝑓(𝑚, 𝑃𝑚) (3)

where the function f () represents the relationship between
throughput and error probability in terms of 𝑚 and 𝑃𝑚 where

m is modulation order and Pm is error probability. The function
f() is expressed as follows:

𝑓(𝑚, 𝑃𝑚) = 𝛼𝑅𝑚𝑍(𝑚, 𝑃𝑚) (4)

where 𝛼, 𝑅𝑚 and Z represent adjusting factor, throughput, and
channel impairment, respectively. In cellular networks,
throughput 𝑅𝑚 (in Mbps) can be calculated as follows [11]:

𝑅𝑚 = 10−6 ቌ𝑣𝐿
𝑗𝑄𝑛

𝑗 𝑔𝑛
𝑗 𝛾𝑚𝑥

𝑁𝑃𝑅𝐵
𝐵𝑊𝑗.𝜇12

𝑇𝑠
𝜇 (1 − 𝑂𝐻𝑗)ቍ

𝐽

𝑗=1

(5)

where J is the number of carrier, 𝑣𝐿
𝑗 is the number of layer, 𝑄𝑛

𝑗

is maximum modulation order, 𝑔𝑛
𝑗 is scaling factor at higher

layers, 𝛾𝑚𝑥 is maximum code rate, 𝑁𝑃𝑅𝐵
𝐵𝑊𝑗.𝜇 is maximum

resource block allocation in bandwidth BW with numerology
𝜇 , 𝑇𝑠

𝜇 is average OFDM symbol duration, and 𝑂𝐻𝑗 is
overhead. In order to simplify, we put all variables as constant
except 𝑄𝑛

𝑗 ≈ 𝑚 . Thus, the throughput 𝑅𝑚 (in Mbps) is a
function with only one variable m. The values of the
modulation order m can be as follows: m = 1 for BSPK , m=2
for QPSK , m=4 for 16 QAM, m=6 for 64 QAM, m= 8 for 256
QAM and so on. When we have MPSK and MQAM
modulation, the relationship between symbol error rate 𝑝𝑚 and
the bit energy 𝐸𝑏

𝑁𝑜
 can be simply expressed as follows [12]:

𝑝𝑚𝑃𝑆𝐾 = 𝑒𝑟𝑓𝑐 ቌඨlog2 𝑚
𝐸𝑏

𝑁𝑜
sin ቀ

𝜋
𝑚ቁቍ

(6)

and
𝑝𝑚𝑄𝐴𝑀

= 2 ൬1 −
1

√𝑚
൰ 𝑒𝑟𝑓𝑐 ቌඨ

3
2(𝑚 − 1)

log2 𝑚 𝐸𝑏

𝑁𝑜
ቍ

− ൬1 −
2

√𝑚
+

1
𝑚

൰ 𝑒𝑟𝑓𝑐2 ቌඨ
3

2(𝑚 − 1)
log2 𝑚 𝐸𝑏

𝑁𝑜
ቍ

(7)

where the complementary error function erfc(z) is defined as
𝑒𝑟𝑓𝑐(𝑧) = 1 − 𝑒𝑟𝑓 (𝑧) (8)

and

𝑒𝑟𝑓(𝑧) =
2

√𝜋
න 𝑒−𝑡2𝑑𝑡

𝑧

0
.

(9)

In cellular network, the transmit power is limited. we fix the
signal power in this model. In cellular network environment,
fading effects are caused by multiple copies of the transmitted
signals at the receiver and signal variation with different
variables such as time, frequency, and geographical location.
They are common channel impairments in that the signal
strength fluctuates over time and distance. The main
components of fading are path loss, Doppler effect, reflection

Reward

Environment

Agent

State

Observe state

Neural Networks

Action

Policy

and diffractions of signals and so on. The fading effect
significantly affects to the data transmission. The Rayleigh
fading probability density function (pdf) is expressed as
follows:

𝑝(𝑟) = ቐ
𝑟

𝜎2 𝑒𝑥𝑝 ቆ−
𝑟2

2𝜎2ቇ , 𝑟 ≥ 0

0, otherwise

(10)

where r is the envelope amplitude of received signal and 2𝜎2

is the mean power of the signal that depends on the distance
between transmitter and the receiver. The channel impairment
in this system model is composed of symbol error probability
and fading effect as follows:

𝑍(𝑚, 𝑃𝑚) = 𝛽𝑝(𝑟)𝑝𝑚 (11)

where 𝛽 is adjusting factor. The state transition function (3)
depends on many variables and is complex with many
variables. We can create a table to simplify it as a function of
𝑚 and 𝑃𝑚.
Definition of actions a(s(t)): We assume that the distribution

of the actions is time homogeneous and define the action as an
element in the time index t. The set of actions is the policy that
is a function of the state space and also updates to maximize
the rewards. We create the discrete action space for the
environment. In this system model, the actions are to choose
the modulation order for the next period. As increasing the
modulation order, we can send more data to a receiver and the
throughput (bits/symbol) increases. However, the error
probability increases. The action is represented as follows:

𝑎(𝑠(𝑡)) = [𝑚, 𝑃𝑚]. (12)

 We can set 15 modulation type from m = 1 to m = 15 and their
error probability at BER 10-6 and can create a table expressing
their relationship.
Definition of reward r(s(t),a(t)): Typically, the agent takes an

action and receives a reward at each state. However, in this
model, the rewards are only given at the final time T because
the OFDMA symbols are transmitted continuously. After
transmitting the packet that is composed of OFDMA symbols,
we can determine whether or not the packet is successfully
received. The goal of this problem is to achieve the target data
volume while minimizing the transmission time slot. We use a
sparse reward function if the goal is achieved at the end of the
transmission period as follows:

𝑅(𝑉(𝑡), 𝑡) = ൜0, when 𝑡 < 𝑇 or 𝑉(𝑡) < 𝑉𝐺
1, when 𝑡 = 𝑇 or 𝑉(𝑡) ≥ 𝑉𝐺

(13)

As we can observe (13), the agent should explore the
environment from the initial state and receive the reward at the
final state. In many real-world scenarios, an agent faces the
challenge of sparse extrinsic reward. Therefore, this is a
realistic condition.
Definition of agent: Since we have a sparse reward function,

the agent receives the reward value 1 only upon reaching the
goal state at the final time T. A large amount of the states does
not have a reward as the episodes become long. We train the
agent to find the optimal series of actions that maximizing the

possibility of transmitting the total data volume while
minimizing the transmission time. We adopt a Deep Q
Network (DQN) to train the agent. The DQN method is based
on a model free, online, and off policy. One disadvantage of Q
learning is to be infeasible or require a huge memory to store
Q values when we have large states, and the Q table grows
exponentially. Thus, the DQN combine Q learning and deep
learning. The neural network replaces the Q table and acts as
the Q value approximator. It maps the input state to the pair of
action and Q value.

B. Proposed method for solving the MDP.
 In this section, we describe the proposed dynamic resource
allocation. In this system model, a policy 𝜋(𝑠) is defined as a
mapping that selects actions in the set of actions. The optimal
policy 𝜋∗(𝑠) represents the policy maximizing the total reward
with the probability of the final data volume 𝑉(𝑇) greater than
𝑉𝐺. Solving the MDP means finding the optimal policy. There
are three approaches to solve the MDP: Model based
algorithms, Model-free algorithms, and Function
approximators based algorithms. We take the third approach.
We define the policy as a function approximator with tunable
parameters. The function approximator approximates the state
space, generalizes to unseen states, and finds the value of state
or action. The function approximator can be a linear function,
a neural network, or a decision tree. The neural network as the
function approximator is useful when the number of states or
action is large. The deep Q learning as a variant of Q learning
is popular and uses a neural network to represent the Q
function. The Q learning is a model free off-policy
reinforcement learning. We can define action-value function
(or Q function) 𝑄𝜋(𝑠, 𝑎) as the expected return starting state s,
taking acting a, and following policy 𝜋 . The action-value
function specifies how good it is to take a particular action
from a certain state. The update rule of Q learning can be
described as follows:

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) ← 𝑄𝜋(𝑠𝑡, 𝑎𝑡)

+ 𝛼 ቆ𝑟𝑡+1 + 𝛾 max
𝑎

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)

− 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)ቇ.

(14)

where 𝑄𝜋(𝑠𝑡, 𝑎𝑡) is the current action, 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) is the
estimate of the optimal next action, 𝑟𝑡+1 is an immediate
reward, 𝛼 is a learning rate and 𝛾 is a discount factor for future
rewards. As we can observe (14), the term 𝑟𝑡+1 +
𝛾 max

𝑎
𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) is the learned value and the term

𝑄𝜋(𝑠𝑡, 𝑎𝑡) is the current value. The difference between them
becomes the update value. We always update it using
maximum value of Q value available from the next state. In the
deep Q learning, a neural network is used to approximate the
state action value function 𝑄𝜋(𝑠, 𝑎) and trained to create the
ground-true values for Q by replacing a Q value table. The
Deep Q Network (DQN) algorithm was developed by Google
DeepMind in 2015 [13, 14]. The DQN uses two neural
networks to stabilize the learning. The main neural network
denoted by the weigh vector 𝜃 is used to estimate the Q values

for the current state and action 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃) . All learning
processes take place in the main neural network. The target
neural network denoted by the weight vector 𝜃′ has same
structure as the main neural network but is used to estimate the
Q values for the next state and action 𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃′). The
agent updates the weight vector to improve the stability. The
weight vectors of the main neural networks are sent to the
target neural network. Both neural networks are implemented
by function approximators. The difference between Q learning
and Deep Q learning is illustrated in figure 3.

Figure 3 Q learning (a) and Deep Q learning (b).
The pseudo code of the proposed dynamic resource allocation
is as follows:

Procedure Dynamic resource allocation process
- Model a resource allocation problem as MDP
- Define the Q function mapping to states and actions in the
MDP.
- Initialize 𝑄൫𝑠𝑡 , 𝑎𝑡,𝑘; 𝜃൯ = 0, 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝐾 where t,
k and 𝜃𝑡 are time index, resource block weight index, and
random parameter, respectively. (Note. the weight factor 𝜃′𝑡of
the target neural network is same as the one of the main neural
network.)
- Define an action 𝑎𝑡,𝑘 as a pair of modulation and error
probability [𝑚, 𝑃𝑚].
- Initialize 𝛼 and 𝛾.
- Initialize the data volume 𝑉(0) to a constant at t = 0.
For episode = 1, M do
 For t = 1, T do

- Select an action 𝑎𝑡,𝑘 with probability 𝜖 . Otherwise
select 𝑎𝑡,𝑘 = max

𝑎
𝑄𝜋൫𝑠𝑡+1, 𝑎𝑡+1,𝑘; 𝜃′൯ // Epsilon

greedy approach arbitrarily chooses a random
strategy with the probability 𝜖 to balance exploration
and exploitation.

- Execute action 𝑎𝑡,𝑘 .
- Observe the reward 𝑟𝑡 and the next state 𝑠𝑡+1.
- Store observation (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in memory buffer
- Sample a random mini-batch of experiences

(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from memory buffer.
- For all experiences in the mini-batch, set the value

function target
𝑦𝑗 =

ቊ
𝑟𝑗 , for a terminal state 𝑠𝑗+1

𝑟𝑗 + 𝛾max
𝑎

𝑄𝜋൫𝑠𝑗+1, 𝑎𝑗+1,𝑘; 𝜃′൯ , for a nonterminal state 𝑠𝑗+1

// Select the action maximizing the Q function maintained by
the target neural network

- Update the weight factor by one-step minimization of
the loss L

𝐿 =
1

2𝑀
 ቀ𝑦𝑗 − 𝑄𝜋൫𝑠𝑗, 𝑎𝑗,𝑘; 𝜃൯ቁ

2
𝑀

𝑗=1
- Update the target weight factor 𝜃′ periodically.
- Update the probability threshold 𝜖.

End for
End for M episodes are reached.
Return 𝜋∗(𝑠)

IV. NUMERICAL ANALYSIS

 Numerical analysis is presented in this section to evaluate the
performance of the proposed method. We set a target
throughput and latency and evaluate how much the proposed
scheme satisfies the requirement. In order to simplify the
evaluation model, we consider the fixed number of users and
constant user traffic. In addition, we create the table for the
state transition. The Matlab Reinforcement Learning and Deep
learning toolboxes [16] are used. The key simulation
configurations are summarized as follows: Single cell model.
The number of users is 5. The target data volume is 2 Kbyte.
The target latency is 10 OFDM symbols period. The 3GPP
resource allocation structure is considered. The channel model
is the Rayleigh fading channel. The reinforcement learning
type is DQN. The reward type is sparse reward. The max
episode is 3000. The number of the test data is 1000.
 Firstly, we train the DQN agent. We obtain the data volume
observation and rewards at the end episode. The reward
represents whether or not the target data volume for a
metaverse application is achieved. We compute the success
rate for the policy by the DQN agent. Figure 4 illustrates
reward values of episodes when DQN agent is trained. As we
can observe figure 4, the agent receives 1 or 0 reward after the
transmission as expressed in sky blue. Dark blue represents the
average reward values.

Figure 4 Training of the model.

Action

Q Table
State

Q value

(a)

Neural
Network

State

Q value action1

(b)

Q value action2

Q value action N

…

Now, we perform simulation with 1000 data packet
transmission and check how much data packet satisfy the target
data volume and latency. Figure 5 illustrates an example of
data transmissions satisfying the requirements or not.

(a)

(b)
Figure 5 An example of data transmission achieving the target data

volume (a) and not satisfying the target data volume (b).
In figure 5, data volume evolution represents how much data
are successfully transmitted. The dash line is the target data
volume. Resource allocation in a data packet represents how
much ratio of modulation type is assigned in the OFDMA
packet. The successful transmission means that the target data
volume 2Kbyte is transmitted in the time slot 10 (Namely, 10
OFDM symbols). In this simulation configuration, the success
rate to achieve the target data volume transmission in the give
time frame is 78.90% that is better than normal transmission
(Static resource allocation) success rate 65%.

V.CONCLUSION AND FURTHER WORKS

 Metaverse application requires both time sensitive
transmission and high throughput transmission. In order to
satisfy this requirement, the dynamic resource allocation
scheme is investigated. Using deep reinforcement learning, we

achieve a better success rate of transmission under the given
simulation configuration. This paper includes the initial results
of dynamic resource allocation research for 6G metaverse.
There are many further works: Traffic model as Possion model,
Comparison study with other cellular resource allocation
schemes, Training model study for practical system, and so on.

ACKNOWLEDGEMENT

This work was supported by 6GBridge-EMETA (Enabling
Metaverse, www.emeta.fi) project.

REFERENCES

[1] Haesik Kim, Artificial Intelligence for 6G, Springer, 2022.
[2] C. Bektas, D. Overbeck, and C. Wietfeld, “SAMUS: Slice-

Aware Machine Learning-based Ultra-Reliable Scheduling,”
ICC 2021 – IEEE International Conference on Communications.
Jun 2021, pp.1–6.

[3] H. Zhang, H. Zhou, and M. Erol-Kantarci, “Team learning-based
resource allocation for open radio access network (o-ran),” IEEE
International Conference on Communications (ICC) 2022.

[4] H. Yu, F. Musumeci, J. Zhang, M. Tornatore, and Y. Ji,
“Isolation-Aware 5G RAN Slice Mapping over WDM Metro-
Aggregation Networks,” Journal of Lightwave Technology, vol.
38, no. 6, pp. 1125–1137, 2020.

[5] Y. Sun, Y. Wang, H. Yu, B. Guo, and X. Zhang, “A learning-
based bandwidth resource allocation method in sliced 5G C-
RAN,” IEEE Globecom Workshops, GC workshop 2019, 2019.

[6] Q. Han, S. Yang, X. Ren, C. Zhao, X. Zhang, and X. Yang,
“OL4EL: online learning for edge-cloud collaborative learning
on heterogeneous edges with resource constraints,” IEEE
Communications Magazine, vol. 58, no. 5, pp. 49–55, 2020.

[7] Q. Zhang, L. Gui, F. Hou, J. Chen, F. Zhu, and F. Tian,
“Dynamic task offloading and resource allocation for
mobileedge computing in dense cloud RAN,” IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 3282–3299, 2020.

[8] Y. Wei, F. R. Yu, M. Song and Z. Han, “User Scheduling and
Resource Allocation in HetNets With Hybrid Energy Supply: An
Actor-Critic Reinforcement Learning Approach,” IEEE
Transactions on Wireless Communications, vol. 17, no. 1, pp.
680-692, Jan. 2018

[9] A. Asheralieva, “Bayesian reinforcement learning-based
coalition formation for distributed resource sharing by device-to-
device users in heterogeneous cellular networks”, IEEE
Transactions on Wireless Communications, vol. 16, no. 8, pp.
5016-5032, Aug. 2017.

[10] 3GPP, “NR; Physical layer procedures for data,” Technical
Specification 38.214, 3rd Generation Partnership Project
(3GPP), 7 2018. Version 15.2.0.

[11] 3GPP TS 38.306 V16.3.0, 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;

[12] NR; User Equipment (UE) radio access capabilities, (Release 16),
2020-12.

[13] Haesik Kim, Wireless Communications Systems Design, John
Wiley & Sons, ISBN:9781118610152, August 2015.

[14] https://deepmind.google/
[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, “Playing Atari with deep reinforcement learning,”
Technical report Deepmind Technologies, 2013. Retrieved from
https://arxiv .org/abs/1312.5602

[16] https://se.mathworks.com/products/matlab.html

