
Eye Movement Tracking for Computer Vision Syndrome using
Deep Learning Techniques

Manan Popat1, Divyan Goyal1, Vibhum Raj1, Nirmal Jayabalan2, and Chittaranjan Hota1

1Department of Computer Science, BITS Pilani, Hyderabad Campus, India
2Department of Pharmacy, BITS Pilani, Hyderabad Campus, India

{f20200029, f20200042, f20200247, nirmalj, hota}@hyderabad.bits-pilani.ac.in

Abstract— Due to the increased usage of digital devices in
daily life, particularly among children, symptoms such as
drying of the eyes, eye strain, headaches, blurred vision, etc.,
have become recurrent nowadays. Extensive use of computers
and smartphones may lead to a common eye-related condition
known as Computer Vision Syndrome (CVS). It is often char-
acterized by a reduced blinking rate of the user. In this paper,
we propose a deep neural network and computer vision-based
machine learning model that entails training a Convolutional
Neural Network (CNN) to detect eye blinks, and monitoring
blink rates with a Long Short-Term Memory (LSTM) network.
This model can be incorporated into smartphones and comput-
ers in the form of background apps and may help prevent the
risk of CVS or similar disorders. Inferences about the blink
rate and eye movement patterns have also been identified. Our
model is implemented using TensorFlow and Dlib libraries and
has been trained on the Closed Eyes in the Wild (CEW) dataset.
The network achieved an accuracy of 94.2% when trained on
non-RGB images of eye patches and 91.4% on RGB facial
images in real-time.

I. INTRODUCTION

Computer Vision Syndrome (CVS) is a term that is
commonly used nowadays to refer to a number of vision-
and eye-related difficulties caused by the increased usage
of computers, tablets, mobile phones, and other electronic
devices [1]. When not treated, this syndrome, also known
as “digital eye strain”, causes problems such as dry eyes,
astigmatism, far-sightedness, presbyopia, and others [2]. The
use of such digital gadgets has grown dramatically across
all age categories, especially among children. It is critical to
monitor device usage to avoid potential eyesight problems.
Drying of the tear film is the primary cause of the fatigue,
burning sensation, and discomfort experienced due to CVS.
Blinking is an inbuilt mechanism that prevents tear film
drying and ensures the ocular surface is lubricated [3].
Hence, we are proposing to develop an intelligent application
to monitor the blinking rate, which is a vital sign of CVS.

Existing research in eye blink detection for CVS has
explored various methods, but several limitations have been
identified. One study [4] tackled edge extraction but strug-
gled with poor lighting conditions, highlighting the challenge
of capturing accurate data under uncontrolled lighting. An-
other work [5] focused on smartphone-based detection, find-
ing that consistent lighting was essential for accurate results,
posing difficulties in outdoor environments. Moreover, a
method utilizing Harris corner detection [6] faced limitations

as it required setting distinct threshold values for each image,
potentially leading to noise-induced point detection when
using low thresholds. These works underscore the need for
robust illumination strategies, stable lighting conditions, and
improved threshold determination methods to enhance the
accuracy and reliability of eye blink detection techniques for
CVS mitigation.

Bennett et al. [7] proposed a method for pupil seg-
mentation and gaze estimation in MR eye videos using a
fully convolutional neural network. However, their approach
mainly focused on static frame-by-frame training and did
not address the real-time monitoring of eye blinking rates
in continuous live streams, which is crucial for CVS assess-
ment. In another study, Jurczak et al. [8] utilized CNN for
eye blink artifacts removal from EEG signals, showcasing
the potential of CNNs for classification tasks. However, their
research focused on a different data type and domain, and
the application to CVS eye blink detection requires a tailored
and robust approach.

Vishesh et al. [9] developed a blink detection model
using MobileNetV2-based CNN to assess drowsiness levels
in drivers. Additionally, Gomaa et al. [10] proposed a CNN-
LSTM based deep learning approach in the same context.
The current work lays emphasis on monitoring blink patterns
during screen interaction, that often involves close-up images
of eyes to accurately assess blink quality and frequency.
Datasets in this domain consist of individuals using digital
devices under various lighting conditions. In contrast, driver
drowsiness detection necessitates real-time monitoring of
blinks from a distance, usually through vehicle-mounted
cameras. Techniques often involve more robust algorithms
due to the need for accurate drowsiness prediction and timely
intervention. Consequently, while both contexts utilize blink
detection, the strategies and datasets diverge to accommodate
distinct goals and operational conditions.

In light of these existing studies, our research introduces
a novel application of a combined approach utilizing a
convolutional neural network (CNN) to extract eye features,
followed by a long short-term memory (LSTM) network to
model the temporal evolution of eye blinking in a continu-
ous live stream input of individuals using a digital device.
The general motivation behind using a CNN network for
classification is their ability to learn and identify patterns
in visual data and automatically extract features from raw



images. Additionally, LSTM layers help model temporal
dependencies in sequential data and are commonly used
for taking a continuous input stream (video frames) and
monitoring the blink rate in real-time with accuracy and
robustness.

Our methodology involved applying the proposed algo-
rithm to a diverse dataset of images of individual faces and
eye patches collected from various sources. The output of
our model provides frame-level classifications, labelling each
frame as either “eye open” or “eye closed”. This research
makes the following key contributions:

(i) Introduction of a dual-stage network that combines
eye features extracted via a CNN with their dynamic rep-
resentation modeled by an LSTM. This approach is tailored
specifically for analyzing live stream videos of digital device
users.

(ii) Thorough experimental evaluation of model parame-
ters, such as LSTM cell units and layers, and deploying the
model using OpenCV and Dlib for real-time monitoring.

(iii) A survey of the various studies on the impact of usage
of electronic devices on the blink rate and eye movement
patterns.

The experimental results demonstrated the model’s robust-
ness in detecting eye states, effectively handling considerable
variations in visual quality and eye positions.

II. INFERENCES ABOUT IMPACT ON EYE BLINK
RATE — A SURVEY

A lot of medical studies [11], [12] have shown that the
act of blinking regularly is crucial for ensuring the dynamic
equilibrium between tear formation and tear on the ocular
surface. Abnormalities in blinking causes the tear film to
dry up, which leads to irritation and pain in the ocular
surface. Various studies have investigated the blink rate and
the duration between blinks. According to these studies [13],
the average spontaneous blink rate ranges between 12 and
15 times per minute. In addition, the period between blinks
ranges from 2.8 to 4 seconds or from 2 to 10 seconds.
The differences in the results of previous studies may be
attributed to differences in the experimental conditions. Un-
der relaxed conditions, a mean blink rate of up to 22 per
minute has been reported [14].

In many studies [15], [16], the blink rate has been observed
to have reduced from 17 per minute during conversation
to about 6 per minute while reading. Moreover, discomfort
and tiredness in the eyes are frequently experienced when
engaging in near tasks like reading, especially when using
electronic devices. There have been numerous studies con-
ducted to investigate the connection between eye fatigue and
the use of visual display terminals (VDTs) [17]. People who
use VDTs frequently complain of eye discomfort and fatigue.
According to a prior study [18], tired eyes was one of the
most commonly reported symptoms among office workers
(40%), while 30% reported dry eyes and eye discomfort. On
an average, normal individuals and those with dry eyes expe-
rienced a 56% and 72% decrease in blink rates, respectively
[19].

The blink rate of dry eye subjects was significantly higher
compared to the control group (according to a t-test with
a p-value of 0.017), as identified by a survey [20]. Both
groups showed a significant decrease in blink rate during
the game and letter tasks (according to a t-test with a p-
value of less than 0.04). Both groups exhibited instances of
partial blinks and rapid sequences of blinks, yet there was no
significant distinction in the amplitude of blinks between the
two groups. Tear film break-up was mostly inferior in normal
subjects, while dry eye subjects showed more tear break-
ups centrally and superiorly [19]. The interaction between
tear break-up and blink behavior was complex and observed
in real-time video recordings. The researchers observed that
dry eye subjects experienced more intense ocular symptoms
post-testing compared to the control group. Both groups
showed an increase in corneal staining post-testing, which
was primarily inferior. A noticeable positive correlation was
observed between the total symptom score and the proportion
of incomplete blinks, suggesting that a higher occurrence of
incomplete blinks was linked to more symptoms. In contrast,
a significant inverse relationship was detected between the
blink score and symptoms, indicating that a higher blink rate
was associated with fewer symptoms.

III. DATA

The dataset we have used for training the model is Closed
Eyes in the Wild (CEW) [21]. The dataset, prepared by
Xiaoyang Tan, includes 2423 images. Of those, 1192 were
obtained from the Internet with their eyes closed, while
the remaining 1231 were selected from the Labeled Face
in the Wild database with their eyes open. Eye patches
were collected using a face detector and eye localization
software based on the coarse face region and eye position.
The cropped coarse faces were resized to 100x100 pixels,
and eye patches measuring 24x24 pixels were extracted from
the eye position. The dataset consists of three versions: Raw
face images with background; Face images warped; and Eye
patches only (non-RGB). Fig. 1 shows some samples from
the two kinds of images used in this study.

Pre-processing: Firstly, we load the images separately as
open and closed (with labels 0 and 1, respectively) from the
directory and then combine them in a single list. The list is
then shuffled and divided into features (image strings) and
target (binary labels), followed by test-train split (with test
size = 0.2) and the required reshaping of images to 224x224.
The target column is then converted into one-hot encoded
vectors.

IV. BINARY CLASSIFICATION MODEL

Transfer learning: Next, we build the model. We used
Inception-v3 as the base model (Fig. 2), which serves as
a feature extractor, and made the layers non-trainable (i.e.,
their weights are frozen during training). By doing so, the
model can learn to generalize better and hence requires
less training since the base model has already learned the
complex patterns in visual data (it is one of the state-of-
the-art models for image classification). This approach also



Fig. 1. Sample images from “Closed Eyes in the Wild” dataset: closed
and open eyes from (i) Eye patches only (non-RGB), and (ii) Face images
warped.

helps reduce the risk of overfitting and allows the model to
achieve better accuracy with limited training data.

CNN and LSTM model: This is followed by sequentially
arranging the layers to build the model as is typically done
for deep learning architectures. The model first takes the
base model (which itself is a CNN), followed by an average
Pooling layer that reduces the dimensions of the extracted
features while retaining all the important information. This
is followed by a Reshape layer that reshapes the output of
the previous layer to a shape of 1x2048. Next, we have three
LSTM layers (with 128 cells each) that learn the temporal
dependencies in the features extracted by the previous layers.
After the LSTM layers, the output is passed through a Dense
(fully connected) layer with 2048 neurons and a ReLU
activation function that learns a higher level representation
of the input. The next layer is a Dropout layer that randomly
drops 30% of the neurons to reduce overfitting. Finally, the
output is passed through a Dense layer with a single neuron
and a Sigmoid activation function to predict the probability
of the input image belonging to one of the two classes (eye
open or eye closed) (Fig. 3). The model is compiled using the
Adam optimizer, Binary Cross-Entropy loss, and Accuracy
as the metric. The model is fitted on the training dataset for
15 epochs, and the predictions are then made over the testing
dataset.

V. USING OPENCV AND DLIB FOR EYE-BLINK
DETECTION

Extending portability and classification function: The
weight parameters obtained from the trained model are then
exported for portability. This is followed by a wrapper
function that, given a localized eye patch within the usual
color space and normal image density, does the required

TABLE I
ARCHITECTURAL PARAMETERS FOR THE MODEL.

Parameter Value
Base model Inception-v3
Pretraining dataset ImageNet
Reshape layer target shape (1, 2048)
Number of LSTM units 128
Depth of stacked LSTM 3
Number of neurons in first dense layer 2048
Activation function for first dense layer ReLU
Dropout layer argument 0.3
Activation function for final dense (classification) layer Sigmoid

TABLE II
COMPILATION PARAMETERS FOR THE MODEL.

Parameter Value
Model optimizer Adam
Loss function Binary cross-entropy
Metric Accuracy
Number of epochs for training 15

pre-processing (resizing to shape 224x224 and normalizing
the image patch) before running it through the classifier and
returning the processed output.

Dlib landmark detection: Dlib is an open-source library
used heavily for computer vision. It is one of the most
widely used libraries providing state-of-the-art performance
in facial recognition. Dlib’s facial landmark detection model
can identify the exact location of specific points on a face,
such as the corners of the eyes or the tip of the nose. We
used this model for the localization of eye and face patches
(which is further used to identify the ROI for the model).
By calculating the extreme left and right ends of the eye
and applying a buffer, we get the location of individual eyes
and their corresponding image patches. These can then be
directly run through the model by using the function we
created above, and the results be visualized and analyzed in
real-time.

Extracting the eye patch: After obtaining the location
of the extremities of an individual eye, some calculations
were done to extract the Region of Interest (ROI) of the
eye, which involved finding the x and y centers and applying
a bit of padding to extract the said ROI. This is used for
directly running through the classification wrapper to get a
label value, which is further extended to measure the eye
blink rate in blinks per minute (as outlined in Algorithm 1).
These results are finally rendered on the screen.

Note that the model parameters, the sequence of the layers,
the reshaping and activation functions, etc., have been found
to be optimal for the given dataset. Hyperparameter tuning
has been extensively done on the number of sequential



Algorithm 1 Blink Rate Detection
Input:

A video stream or webcam feed;
The trained model for binary classification of images
(eye open or closed);

Output:
The blink rate of the user in blinks per minute;

1: Initialize the detector and predictor classes from the dlib
library;

2: for each frame in the video stream or webcam feed do
3: Convert the frame to grayscale;
4: Detect faces in the grayscale frame using the ‘detec-

-tor’ object;
5: for each detected face do
6: Predict the shape of the face using the ‘predictor’

object;
7: Calculate coordinates of ROI around eye;
8: Extract grayscale image patch of ROI and nor-

malize it;
9: Resize image patch to required size;

10: Classify image patch using the model;
11: if current label is ‘CLOSE’ and previous label

was ‘OPEN’ then
12: Record a blink event with current timestamp1;
13: end if
14: Update previous label with current label;
15: end for
16: Augment the frame with model’s findings1;
17: Display the augmented frame;
18: end for

model layers2, dropout parameters, type of pooling layers,
and activation functions. The training time was reasonable
according to modern standards, and the model size was
compact (around 200 MB). Integrating the model with the
Dlib library and pre-processing the images using OpenCV
has been observed to perform sufficiently well in real-time.
It is worth noting that since an average blink lasts between
0.1 and 0.4 seconds, an FPS of around 10 would suffice.
Additionally, the actual duration of the blink does not matter
as long as the blink duration is not shorter than the frame
time (0.1 milliseconds). However, currently the experimental
script employed for the eye images model acquires live video
input at a frame rate ranging from 8 to 10 FPS. Notably, the
entire process is executed solely on the CPU. The potential
for performance enhancement is substantial if a GPU-based
iteration is pursued. However, there might not be a need to
capture such fast blinks because the current setup is enough
for real-time monitoring.

1These steps serve as placeholders for CVS detection logic, explained in
Future Work.

2Except the CNN layers, since they are provided by the base Inception-v3
model and are frozen during training.

VI. RESULTS

The combination of CNN and LSTM layers is effective for
eye blink classification as it captures both spatial and tem-
poral information in input data. CNN layers automatically
extract important features from raw images for blink or non-
blink classification. Trained on large image datasets, CNN
layers learn filters to identify features, generating a feature
map indicating their presence in the image. However, blink
classification also involves monitoring temporal changes.
LSTM layers, designed for modeling temporal dependencies,
process input frames sequentially to learn blink rate patterns
over time.

The model was first trained on individual eye patches so as
to make it focus solely on the region of the image containing
the eye. This was originally intended to result in a more
accurate classification of eye blinks, but the fact that the
model may struggle to generalize to new images with differ-
ent backgrounds or lighting conditions was also considered.
Moreover, according to the original hypothesis, training the
model on complete face images could allow the model to
learn to recognize subtle changes in facial expression or head
pose, which could be important in detecting eye blinks. This
can improve the efficiency and speed of the model in some
instances.

However, on running the latter model, we observed a slight
drop in the speed of detecting eye blinks, as well as the
accuracy of measuring the frequency (Fig. 4). In principle,
passing complete facial images to the model makes more
sense since the layers would then also take into account the
lighting conditions, eyebrows, etc. while classifying. How-
ever, in practice, it is computationally inefficient and more
prohibitive than the former. It can be assumed that since the
facial images dataset is smaller than the eye images dataset,
the model finds it difficult to train itself in the presence
of outliers (due to lighting condition variations, etc.), and
increasing the number of epochs results in overfitting, or
that the model may not be as effective at capturing the subtle
changes in the eye region that are indicative of an eye blink.

TABLE III
PERFORMANCE OF THE FINAL MODEL (TRAINED OVER 15 EPOCHS).

Dataset Train accuracy Test accuracy
Eye patches only (non-RGB) 99.4 % 94.2 %
Face images warped (RGB) 96.7 % 91.4 %

After building the model with the aforementioned ar-
chitecture, we first trained it on the individual non-RGB
images of eye patches from the dataset (Fig. 5). We observed
that the training accuracy obtained after 15 epochs was
99.4%, and the testing accuracy was 94.2% (Precision =
91.7% and Recall = 95.9%). The trained model worked
significantly well in real-time as well, in terms of speed and
accuracy. This was followed by running the model on face-
pass images (RGB), giving a 96.7% training accuracy and
a 91.4% testing accuracy (Precision = 84.6% and Recall =



Fig. 2. Leveraging Transfer Learning: Inception-v3 base model (trained on ImageNet dataset) provides pre-trained CNN layers.

Fig. 3. Model architecture diagram.

93.2%). On increasing the number of epochs used to train the
model, a significant improvement was noticed in the training
accuracy, which was not the case with individual eye images.
However, testing accuracy did not change much. Note that
these metrics indicate the ability of the model to classify
static images as open or closed eyes. However, the final script
used in the experiment, which takes a live stream video of the
user as input, also demonstrates notably high performance in
accurately assessing the blink rate.

VII. CONCLUSION

After training the model and importing it, the user’s live
video stream (captured via a webcam) is segmented into a
sequence of image inputs, classified independently to detect
blinks and consequently the blink rate (in blinks per minute).
This script runs well in the background, enabling users to
identify the initial stages of CVS and implement preven-
tive actions (such as eye exercise and acupressure [22]).

Fig. 4. Bar chart showing the comparison of the performance of the model
on the two datasets. The evaluation metrics used are Mean Absolute Error,
Root Mean Squared Error, and Coefficient of Determination.



Fig. 5. Training accuracy and testing accuracy plotted as a function of the
number of epochs during training of the final model on the "Eye patches
only (grayscale)" dataset.

Additionally, the experimental script may prompt reminders
for the user to blink. A conclusion can then be drawn
by contrasting the user’s current blink frequency with the
average blinking patterns. However, confirming the presence
of CVS is a much more onerous task and there do not
exist sufficient datasets and parameter studies that can help
in the correct diagnosis. Moreover, we recognize that long-
term monitoring and evaluation of several other parameter
measurements are imperative to confirm its presence. As
such, future research endeavors must encompass extended
observation periods and a broader array of metrics to achieve
a more conclusive understanding of CVS and its potential
associations with ocular health in the context of digital device
usage.

VIII. FUTURE WORK

To confirm CVS in users, it is crucial to gather data on
various eye conditions linked to it. Red eyes, for instance, are
a common CVS symptom and a valuable indicator. Addition-
ally, dry eyes, eye fatigue, and eye strain can suggest CVS.
Collecting this data can enable the creation of a predictive
model to alert users about CVS risk. Using eye-tracking
technology to monitor users’ eye movements when using
digital devices and analyzing the data through unsupervised
learning techniques like clustering and anomaly detection can
help identify relevant patterns. It is evident that the blink
rate decreases with prolonged use of digital devices, but
researchers further suggest that eyes may get constricted and
remain half closed while digitally strained [23]. Thus, in this
context, the Eye Aspect Ratio (EAR) [24], which could be
easily calculated by using Dlib’s facial landmarks, could be
used as an unsupervised learning parameter to determine the
level of openness or closure of the eyes. This information
could be collectively used to develop and implement a
predictive model for early detection of eye-related issues
through an intelligent/cognitive mobile application.
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