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Abstract— Convolutional Neural Network (CNN) based object 

detection models struggle with differentiating objects from the 

background and with the separation and global interaction among 

multiple objects within an image. As a result, accurately capturing 

the location of objects in such images necessitates the use of the 

Region Proposal Network (RPN) structure. However, RPNs 

present several challenges in terms of performance and efficiency. 

This situation has led to an increasing focus on research in 

Transformer-based object detection models. While these 

Transformer-based models improve performance over their 

predecessors, they often compromise efficiency in terms of speed 

and training duration. The proposed method introduces a novel 

approach that interprets the channels of the feature map as 

compressed objects, fundamentally transforming the CNN 

paradigm by eliminating the need for Region Proposal in CNN-

based object detection architectures. Utilizing a one-to-one 

matching function, it turns object detection into a direct prediction 

problem. Moreover, the DSP R-CNN model, developed from this 

method, streamlines the pipeline by dispensing with heuristic 

elements like Non-Maximum Suppression (NMS) and anchor box 

generation. The experiments on Circular pipe dataset show that 

this approach achieves higher accuracy and faster performance 

compared to the widely used CNN-based model Faster R-CNN 

and Transformer-based model DETR in the field of object 

detection.  
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I. INTRODUCTION  

Object detection is an automated technique for distinguishing 
and identifying objects from the background in images. Object 
detection is increasingly being implemented in various fields 
including disease identification in the medical sector, fault 
detection in the manufacturing industry, military and robot 
vision [1]. With the miniaturization and diversification of 
objects, the importance of object detection is growing. 
Consequently, extensive research has been conducted in this 
area, with studies like Faster R-CNN, YOLO, and Mask R-CNN 
extracting features from objects based on Convolutional Neural 
Networks (CNN) specialized in image processing [2, 3, 4]. 
CNN-based object detection models require the utilization of a 
Region Proposal Network (RPN), which serves to indirectly 
identify areas that are likely to contain objects [5, 6, 7]. The 
reason is that in situations where multiple objects coexist within 

an image, it becomes challenging to simultaneously consider the 
separation and interaction among these objects. Therefore, 
without an RPN, CNNs might lack the necessary information for 
accurately predicting the location and size of each object. 

However, the indirect capture of target areas by RPN has led 
to several issues. Firstly, there is a decrease in the flexibility of 
object detection models. RPN heavily relies on hyperparameters 
such as the size and ratio of candidate regions, and the size of 
Grid Cells. Secondly, there is a loss of information. 
Discrepancies exist between the target areas passed to the CNN 
and the actual areas. Furthermore, in the process of passing 
target areas to the CNN, roi pooling, which is responsible for 
size adjustment, results in information loss. Thirdly, there is a 
decrease in model efficiency. The training process of RPN 
involves encompassing multiple target areas, resulting in 
inefficiencies. Additionally, the post-processing manual task of 
Non-Maximum Suppression (NMS) is necessary to eliminate 
overlapping target areas. Moreover, since candidate regions 
generated heuristically often correspond to locations without 
objects, unnecessary elements are included during training when 
comparing these candidate regions with actual areas. 

Recently, due to the limitations of RPN, There has been a 
need for models that compare actual areas with predicted areas 
directly, rather than indirectly generated target areas. However, 
it remains challenging to simultaneously consider the separation 
and interaction of different objects without the RPN structure [8]. 
In response, many studies have endeavored to address this issue 
by employing the Transformer architecture, which features an 
encoder-decoder structure [9, 10, 11, 12]. The reason 
Transformers can eliminate the RPN is due to their capability to 
explicitly model interactions between elements through self-
attention, thereby enabling interactions among separated objects. 
That is, during the presence of multiple objects in images and 
videos, the encoder facilitates the separation among objects, 
while the decoder allows components within individual objects 
to interact, adjusting the size and position of the predicted 
bounding boxes.  

While Transformers have resolved the issues of the RPN 
structure, their self-attention operation renders them incapable 
of capturing the locality features of objects, making the detection 
of smaller objects unfeasible. Furthermore, the Transformer's 
structure, which has a low inductive bias, requires a large 
volume of image data during the model's convergence process 
and necessitates a lengthy training period, presenting a *Corresponding author—Tel: +82-2-3290-3396; Fax: +82-2-3290-4550 



limitation in its application for large-scale applications [13]. 
Therefore, to improve the time efficiency in the field of object 
detection, the application of CNN-based models is necessary. 

The proposed method aims to enable object detection using 
CNN-based models without the RPN. The proposed method 
applies bipartite matching between the predicted and actual 
areas in the Transformer-based object detection model, 
Detection Transformer [10]. This study proposes the Direct Set 
Prediction Region with CNN features (DSP R-CNN), a method 
designed to eliminate the RPN in CNN-based object detection 
models by interpreting the channels of the feature map as objects.  

Chapter 2 describes the theoretical background necessary for 
understanding the proposed model. Chapter 3 describes the 
detailed information about the proposed DSP R-CNN model. 
Chapter 4 describes the results of comparative experiments 
between Faster R-CNN and DETR. Finally, Chapter 5 describes 
the conclusions. 

II. RELATED WORKS 

A. Region Proposal Network 

Fig 1 shows the mechanism of the Region Proposal Network 

(RPN). The RPN generates candidate regions, or anchor boxes, 

of various sizes and ratios for each grid cell, as depicted on the 

right side of Fig 1. It then compares these target boxes with the 

actual object areas (Ground-Truth, GT), thereby effectively 

pinpointing potential object locations to be forwarded to the 

CNN. CNN-based object detection models leverage this 

mechanism by separating objects at the RPN phase and 

facilitating interaction among these segregated objects during 

the CNN phase. 

 

B. Convolutional Block Attention Module 

Convolutional block attention module (CBAM) is a simple 

and effective attention module for feed forward CNNs [14]. Fig 

1 shows the structure of CBAM. It sequentially infers attention 

maps along two separate dimensions, channel and spatial, from 

the feature map, and then multiplies each attention map by the 

input feature map. It allows for the establishment of a global 

reasoning framework across channels and supports the 

interaction of local information.  

 

 

C. Hungarian Matching Algorithm 

The Hungarian Algorithm is a methodology that solves 

assignment problems by finding all possible pairs in a bipartite 

graph that connects two independent groups, and then 

identifying the connection with the maximum weight [15]. 

When there are two sets of nodes, I and J, the cost incurred for 

I to process J is denoted as 𝑐(𝑖, 𝑗). Fig 3 shows a complete 

bipartite graph defined by two sets of nodes and the costs 

associated with their edges.  

 

As shown in Equation (1), the technique seeks to find a perfect 

matching M in the complete bipartite graph that minimizes the 

cost. 

𝐿𝑐𝑜𝑚𝑝𝑙𝑡𝑒 𝑔𝑟𝑎𝑝ℎ =  ∑ 𝑐(𝑖, 𝑗)
(ⅈ,𝑗)∈𝑀

 

 

(1) 

 

Fig 1. How RPN works 

Fig 2. CBAM Structure 

Fig 3. CBAM Structure 



  

III. METHODOLOGY 

In this chapter, we introduce the DSP R-CNN, an efficient 

training pipeline that achieves direct set construction between 

actual and predicted areas, thereby eliminating the RPN in 

CNN-based object detection methods. Fig 4 shows the overall 

structure of the proposed method. The DSP R-CNN consists of 

four main processes for training. (1) Due to the nature of CNN-

based object detection models, it is not possible to separate 

objects or design global and local interactions within objects in 

a single stage. Therefore, features of objects are extracted using 

the Darknet-53 backbone structure, fine-tuned for multi-label 

classification, to segregate objects within the image [3]. (2) A 

CBAM module is configured to design global and local 

interactions within separated individual objects. (3) A Feed 

Forward Convolution Network (FFCN) comprised of 1x1 

convolutions is established to summarize the compressed 

information of objects into class information and locations. (4) 

The predicted objects are matched one-to-one with the actual 

objects using the loss function represented in Equation (3). 

Subsequently, the model is trained to adjust the regions of 

predicted objects using the Hungarian loss function, as detailed 

in Equation (4). 

A. Backbone for the separation of objects 

In CNN-based object detection models, the model for the 
separation of objects is a crucial step for constructing direct set 
predictions, excluding the RPN. In this study, Darknet53 is 
utilized. When an initial image 3×H0×W0  (with three channels) 
is inputted, it passes through Darknet53 and returns a feature 
map f with lower resolution C×H×W. For the extraction of 
object regions and features within the image, Cross Entropy 
Loss is used for Multi-Label Classification, as detailed in 
Equation (2). pc  represents the predicted probability for 
individual classes, and yc  indicates whether the corresponding 
class exists in the image, being either 0 or 1. Thus, the Cross 
Entropy Loss decreases as the predicted probability increases for 
the classes present in the image. 

Lcross−entropy =  −
1

N
∑ yc log(pc) 

N

c=1

 (2) 

 

B. Channel & spatial attention module for object interaction 

CNN-based object detection models have had the issue of 
being unable to consider interactions between objects without an 
RPN. Although fully connected layers enable these interactions, 
they can lead to the loss of positional information. Therefore, the 
RPN structure, which captures the location of prediction areas, 
is necessary. However, the RPN reduces the flexibility and 
efficiency of the model. This study aims to resolve this by 
recognizing feature maps as objects through the CBAM module. 
Images processed through Darknet53 result in feature maps of 
size N * H * W (where N is the number of channels). Each 
channel contains compressed information of specific objects, 
treating individual channels as objects. These N compressed 
objects facilitate more effective separation within the image 
through channel attention and allow smoother interactions 
between objects. Additionally, spatial attention within objects 
suggests their prediction areas. The compressed channels 
(objects), having completed both inter-object and intra-object 
interactions, are then input into a feed-forward 1x1 convolution 
network. 

C. Feed Forward 1x1 Convolution Network 

 The final predictions are computed by three layers of 1x1 
Convolution and ReLU activation functions. The Feed Forward 
Convolution Network (FFCN) predicts normalized central 
coordinates, height, and width of the prediction boxes from the 
input image and uses the softmax function to predict class labels. 
Typically, N predicts a fixed number of objects larger than the 
actual number of objects in the image. Therefore, an additional 
class label θ, representing 'background,' is used to indicate the 
absence of detected objects within a slot [10]. The information 
of the N compressed objects is independently decoded into box 
coordinates and class labels, resulting in N final predictions. 

D. Loss Function 

 A primary challenge during the training of traditional CNN-
based object detection models has been comparing target objects 
with all predicted objects to infer their location and class. As a 
solution, DSP R-CNN maximizes training efficiency by 
generating bipartite (one-to-one) matching between the actual 
objects and a fixed number of N predicted objects. The function 
for bipartite matching is as shown in Equation (3) [10]. 

Fig 4. DSP R-CNN Structure 



σ̂ = ∑ Lmatch

N

i

(yi, ŷσ(i)) 

 

(3) 

 

In Equation (3), y represents the set of actual objects, and ŷ  
represents the set of N predicted objects. The process involves 
searching all possible permutations σ to find the pairing ŷσ(i) 

that minimizes the match Lmatch loss function between the two 
sets. The matching cost( Lmatch)  sequentially calculates the 
similarity between the N predicted classes and areas to the actual 
object yi. In the actual object yi = (ci, x, z, w, h), ci denotes the 
class label of each object. The class label can be an empty set, 
indicating the background. There are only N actual objects, 
similar to predicted objects, and those where ci is an empty set 
do not get matched with predicted objects having an empty set 
for ci and are excluded from training. In yi x, z, w, h define the 
vector for the object’s central coordinates, height, and width. In 
a specific pairing σ(i), when the predicted class is correct and 

the positional coordinates are p̂σ(i)(ci) , b̂σ(i)(ci)  the optimal 

pairing σ̂  and its matching cost are calculated as shown in 
Equation (4) [10]. 

LMatch = −1{ci ≠ 0}p̂σ(i)(ci) + 1{ci

≠ 0} Lbox(bi, b̂δ(ï))) 

 

(4) 

In Equation (4), Lbox is a formula that calculates the difference 
between two matched boxes. Once the optimal matching is 
found through the matching cost, it is optimized as per Equation 
(5) by a linear combination of the negative log-likelihood loss 
between matches and the loss of the prediction area [10]. 

LHungarian(y, ŷ) = ∑[−logp̂σ̂(i)(ci)

N

i=1

+ 1{ci≠∅}Lbox(bi, b̂σ̂(i))] 

(2) 

 

 In the predicted pairings, if the class (Class) is 'no object,' 
meaning ci is an empty set, it is not included in the loss function. 
Finally, Lbox  in Equation (4) and Equation (5)'s LHungarian , 

which includes Lbox, is defined as per Equation (6) as a loss 
function that calculates the difference between the locations of 
the actual and predicted objects. Lbox  utilizes a normalized 
(between 0 and 1) L1 Loss and a scale-invariant generalized 
Intersection over Union (gIoU) loss.  

IV. EXPERIMENTAL RESULTS 

A. Dataset 

The experiments utilized circular pipe data from the 
manufacturing industry, specifically for the transportation of 
fluid materials (Caesar, et al., 2018; Yang, et al., 2021). Circular 
pipes refer to pipelines used for the transportation of fluid 
materials in various industries, including Oil/Gas and 
Chemicals/Petrochemicals. The circular pipe data, by its nature, 
may present class imbalances, and the data used in the 
experiments have class types and proportions as shown in 
<Table 1> [16]. 

 

Table 1. Circular tube data 

Class Air-hole Crack Overlap Unfused 

Image 

    

개수 2051 119 219 408 

 

B. Experimental setting 

To address class imbalances in the circular pipe data, 

oversampling methods that do not distort the objects, such as 

Rotation, Gaussian Noise, Color Distortion, Resize, Random 

Flip, and Shearing, were used to augment the data. After data 

augmentation, the number of objects per class is as shown in 

<Table 2>.  

 
Table 2. Number of objects per class by data augmentation 

Class Air-hole Crack Overlap Unfused 

Image     

Number 2051 1190 1095 1224 

 

The data for training, validation, and testing are divided in a 

6:2:2 ratio, as detailed in <Table 3>. The distribution for 

training, validation, and testing purposes follows the same 6:2:2 

ratio, as indicated in <Table 3>. 

 
Table3. Number of objects separated by Train, Val and Test 

 Air-hole Crack Overlap Unfused 

Numbe

r 
2,051 1,190 1,095 1,224 

Train 

(60%) 
1,231 714 657 734 

Val 

(20%) 
410 238 219 195 

 

C. Evaluation Metrics 

To compare the performance of the models, metrics such as 

Average Precision (AP), Training Time, and Inference Time 

were used. AP is an evaluation metric used to assess the 

performance of object detection algorithms and corresponds to 

the area under the Precision-Recall curve. Precision and Recall 

are calculated based on the true and false classification results 

shown in <Table 5>. Precision is determined, as per Equation 

(7), by the ratio of correctly predicted objects among all 

predicted objects. Recall is calculated, as per Equation (8), by 

the ratio of correctly predicted objects among the actual objects. 

After calculating Precision and Recall, the area under the 

Precision-Recall Curve is computed to determine the AP value. 

However, since the ratio of Precision and Recall varies 

depending on the Intersection Over Union (IOU), which 



indicates the degree of overlap between the actual and predicted 

areas, object detection research commonly compares AP values 

based on IOU thresholds of 0.5 and 0.75. 

 
Table 5. Confusion Matrix 

 Actual 

Positive 

Actual 

Negative 

Predicted 

Positive 

TP 

(True Positive) 

FP 

(False Positive) 

Predicted 

Negative 

FN 

(False Negative) 

TN 

(True Negative) 

   

Precision = 
TP

TP+ FP
 (7) 

 

        Recall = 
TP

TP+FN
 (8) 

 

 

 
  

D. Performance of The Proposed Method 

The experiments conducted various comparative tests based 

on the different sizes of objects and the set IOU values. For the 

circular pipe data, the Air-hole class was categorized as Small, 

the Crack class as Medium, and the Overlap and Unfused 

classes as Large Data. As shown in <Table 6> and <Table 7>, 

APS, APM, and APL represent the AP values calculated for 

small, medium, and large data, respectively.  

 
Table 6. Circular tube data AP Comparison 

model AP AP50 APs APm APL 

F-RCNN 63.0 69.5 47.7 61.2 77.5 

DETR 32.8 44.3 22.3 48.4 50.4 

Ours 67.3 74.2 40.2 69.9 81.7 

 

AP represent the results when the IOU is set to 0.75, and AP50 

denotes the results with an IOU of 0.5. In both datasets, DSP R-

CNN demonstrates superior performance in AP across different 

IOUs. However, as indicated in <Table 6>, there is a 

performance decline in Small data, attributed to Darknet-53's 

inability to effectively detect small objects. It is also noteworthy 

that DETR exhibited significantly lower performance with 

circular pipe data, due to the Transformer structure requiring a 

substantial amount of data and iterations for convergence. 

<Table 8> and <Table 9> present the experimental results from 

a temporal perspective.  

Table 8. Circular tube data Training, Inference Time 

Model Training Time Inference 

Time (FPS) 

F-RCNN 1.17 Hours 12 

DETR 2.0 Hours 15 

Ours 1.33 Hours 20 

 

The training time was longer than Faster R-CNN due to the 

additional convolution layers required to design Channel and 

Spatial Attention. Yet, the DSP R-CNN model, which 

eliminates the RPN, shows remarkably higher performance in 

Inference Time.  

<Figure 8> displays the results of inferring circular pipe data 

using the DSP R-CNN model. 

 

 
Figure 8. Circular tube data inference result – the blue box 

represents the actual area. 

Furthermore, the performance is compared based on the 

CBAM module. The dataset used was circular pipe data. 

<Figure 9> and <Figure 10> display the performance 

comparison of AP50 and APS according to the number of 

CBAM modules.  

 
Figure 9. AP50 performance change according to the number of CBAM 

modules 

 
Figure 10. APs performance change according to the number of CBAM 

modules 

The experimental results indicate that the performance 

increases with the addition of CBAM modules. This suggests 

that the channel attention and spatial attention in CBAM 

facilitate smoother interactions between objects. Notably, an 

increase in the number of CBAM modules showed an improved 

performance range, especially in smaller-sized data. This 

implies that spatial attention, being a global operation, has 



addressed the limitation of traditional vanilla attention that was 

unable to detect smaller objects. 

Small, medium, and large data, respectively. The AP values 

represent the results when the IOU is set to 0.75, and AP50 

denotes the results with an IOU of 0.5. In both datasets, DSP R-

CNN demonstrates superior performance in AP across different 

IOUs. However, as indicated in <Table 6>, there is a 

performance decline in small data, attributed to Darknet-53's 

inability to effectively detect small objects. It is also noteworthy 

that DETR exhibited significantly lower performance with 

circular pipe data, due to the Transformer structure requiring a 

substantial amount of data and iterations for convergence. 

<Table 8> and <Table 9> present the experimental results from 

a temporal perspective. The training time was longer than 

Faster R-CNN due to the additional convolution layers required 

to design Channel and Spatial Attention. Yet, the DSP R-CNN 

model, which eliminates the RPN, shows remarkably higher 

performance in Inference Time. <Figure 8> displays the results 

of inferring circular pipe data using the DSP R-CNN model. 

V. CONCLUSION 

This study proposes the first direct object detection model 

based on the CNN model structure and bipartite matching loss. 

This approach has shown similar or improved performance and 

faster training and inference speeds compared to Faster R-CNN 

and DETR in real-world circular pipe data. Particularly, the 

traditional DETR has been known to suffer from reduced 

performance in detecting small objects due to its global 

attention operation. The proposed method in this research 

addresses this by employing spatial attention operations, thus 

enhancing the detection performance for small objects. The 

backbone model, Darknet-53, plays a crucial role in separating 

objects. The performance of object detection models can be 

significantly influenced by the classification capabilities of the 

backbone, and there is a notable variation in performance based 

on the number of CBAM modules. Therefore, future research 

will focus on performance comparisons contingent on changes 

in the backbone and the number of modules. 
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