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Abstract—Digital Twin is expected to be a key technology for
realizing the next-generation smart city. It can be applied to social
infrastructure, manufacturing, and medical fields. This paper
focuses on ”Digital Twin City”, which collects all kinds of data
in a city and uses it for public services such as transportation,
disaster prevention and urban planning, thereby improving the
quality of life for residents. Three-dimensional urban landscapes
formed by point cloud data are essential for the development of
public services and other services in Digital Twin City. However,
installing sensors and collecting fresh data from every corner of
the city involves high initial and maintenance costs. Therefore,
involving residents in data collection is considered a promising
option. To create incentives for residents to participate as data
providers, we propose a data trading cooperation game based
on coalitional game. As a characteristic function of the game, an
anti-duality game of airport game that solves the already known
cost allocation problem is used, which corresponds to the reward
distribution problem in this paper. In the numerical example, the
distribution of reward is determined around Nucleolus, which
is the allocation that minimizes the maximum excess of data
providers.

Index Terms—Digital Twin, Point cloud, Anti-duality game,
Nucleolus

I. Introduction

Digital Twin is expected to be a key technology [1] for
realizing the next-generation smart city. Digital Twin enables
the creation of highly accurate digital models in a virtual space
in real time by sensing data from an actual environment. The
digital model allows us to achieve a very realistic simulation
(mirroring of the real world), which can be used to solve
various social problems. Digital Twin can be applied to social
infrastructure, manufacturing, and medical fields. In particular,
we focus on Digital Twin City as described in [1] — collecting
all kinds of data in a city and using them for public services
such as transportation, disaster prevention, and city planning
to improve the quality of residents’ lives.

Digital Twin City has tried to implement and demonstrate
worldwide, including Virtual Singapore [2]. In Japan, Virtual
SHIZUOKA [3], the PLATEAU Project [4] of the Ministry of
Land, Infrastructure, Transport and Tourism, and the Tokyo
Metropolitan Government’s Tokyo Digital Twin Project [5]

are currently testing. To create a Digital Twin City, all the
city’s latest spatio-temporal data are collected in real-time,
including three-dimensional city scenery and city activities
such as weather information, public transportation, and human
activities.

Three-dimensional city scenery formed by point cloud data
is essential for launching public and other services in Digital
Twin City. However, collecting fresh data on every city corner
by setting up sensors would require high initial and mainte-
nance costs.

The authors of this paper proposed the concept of a Co-
creation of a Digital Twin City by letting residents get involved
in data collection and creating a Digital Twin City [6] [7]
(in Fig.1). However, there is a lack of consideration of how
to encourage residents to participate as data providers. Data
consumers — companies that use the collected data — should
cooperate to create incentives to give back to data providers.

We believe the cooperative game theory is a practical
solution to the above problem. In cooperative game theory,
several solutions have been proposed for distributing profits
among players, including core, Shapley value, and Nucleolus.
Among them, the solution called Nucleolus has attracted
attention. Nucleolus is the most stable solution because it
lexicographically minimizes the dissatisfaction score among all
coalitions. It has been proposed as a method of cost allocation
and reward distribution.

The main problem in cooperative game theory is that the
cost allocation assumes an indirect distribution of reward. In
addition, it did not consider excess, which is a measure of
dissatisfaction of the data providers.

Therefore, this paper proposes a data trading cooperation
game using coalitional games to create incentives for residents
to participate as data providers. The proposal can be a pricing
design for point cloud data trading in the smart city [8]. The
coalitional games, the basic model of cooperative game theory,
is widely known as a theory that discusses how to form a
coalition and distribute profits to each player in the presence
of multiple autonomous players [9].

Using an anti-duality game in cooperative game theory, we



Fig. 1. Overview of the Co-creation of a Digital Twin City.

formulate the problem as a reward distribution. The amount of
reward distribution to each data provider is determined with a
focus on the distribution that minimizes the maximum excess.

II. Related Work and Game theory
A. Related Work

Mobile Crowd Sensing (MCS) is a new sensing network
concept that enables low-cost, wide-area sensing by mobile
users using their smartphones as sensors [10]. There are two
different MCS models, depending on who decides the task
scheduling (the server or each user). In this paper, we focus
on User-centric Participatory Sensing (UPS), in which each
participating user decides individually on task scheduling and
determines the task to be performed.

In UPS, this is often done decentralized with local informa-
tion. Jiang et al. proposed a P2P-based MCS system [11] [12].
They also focused on task similarity and proposed a method to
improve the overall system efficiency by reusing data among
different tasks [13]. However, these studies are based on a
one-to-one correspondence between buyers and sellers of data,
and they do not take into account the characteristics of the
sensing data concerning its price design, such as the fact that
superimposition improves the quality of the data, as in the case
of point cloud data.

In the cost above allocation [14], focusing on data con-
sumers who buy data, the share of expenses covered by
each consumer is calculated for cases in which multiple data
consumers who meet certain conditions cooperate to purchase
data. However, the paper does not take data price into account.
Therefore, this paper designs pricing considering where point
cloud data is collected and where multiple providers cooperate
to sense such data in requested areas. Then the amount of
reward to each data provider is calculated based on cooperative
game theory [9] [15].

B. Coalitional Game
A coalitional game can determine the amount of reward for

each data provider. In a coalitional game, N = {1, 2, ..., 𝑛}

is the set of 𝑛 players, and a subset S of N is called a
coalition of players (𝑠 = |S|). For each coalition, the function
𝑣 corresponding to the worth of the coalition is called the
characteristic function of the game, and 𝑣(S) is here called the
coalition value. A game 𝐺 (N , 𝑣) formulated in terms of the
set N and the characteristic function 𝑣 is called a coalitional
game.

In the game 𝐺 (N , 𝑣), x = (𝑥1, 𝑥2, ..., 𝑥𝑛) is called the payoff
vector of the game. When this payoff vector is an imputation,
it must satisfy the two properties of collective rationality and
individual rationality [9]. The imputation is a payoff vector
that satisfies that each player receives more payoff than he or
she could have earned alone and that the sum of the payoffs
received by the players is the payoff earned by all.

Collective Rationality
When a coalition is formed by all 𝑛 players, the coali-
tion value 𝑣(N) needs to be distributed among all
the players. Therefore, it must satisfy

∑𝑁
𝑖=1 𝑥𝑖 = 𝑣(𝑁).

This requirement on 𝑥𝑖 is called collective rationality.
Individual Rationality

The payoff for a player 𝑖 who does not join a coalition
is 𝑣(𝑖), and if he does join a coalition, player 𝑖
would demand at least 𝑣(𝑖) as his share of the payoff.
Therefore, if 𝑥𝑖 ≥ 𝑣(𝑖) is satisfied, 𝑥𝑖 is said to
possess individual rationality.

The core of the game is the set of payoffs for which
there is no unsatisfactory coalition, and is known to coincide
with payoffs that satisfy the following condition of coalitional
rationality [9]. ∑︁

𝑖∈S
𝑥𝑖 ≥ 𝑣(S) ,∀S ∈ N . (1)

For any coalition, the sum of its payoffs is greater than
the values of the coalition. The core is a set of imputations,
however, typical examples of solutions to the coalitional game
are uniquely determined values such as the Shapley value and
the Nucleolus.

1) Shapley Value: First, we discuss Shapley values. In a
coalition S, a player 𝑖 is not included in S. The players of
the coalition S can get 𝑣(S), however when player 𝑖 joins this
coalition, the value of coalition is 𝑣(S ∪ {𝑖}). When a player
𝑖 joins a coalition, the difference between the characteristic
function values with S and the value with S − {𝑖} is called
the marginal contribution of player 𝑖 to the coalition S, and its
average is called the Shapley value [9]. In a coalitional game
𝐺 (N , 𝑣) with transferable utility, the Shapley value of player
𝑖 is defined by the following equation.

𝑥
shp
𝑖

=
∑︁

𝑖∈S⊂N

(𝑠 − 1)!(𝑛 − 𝑠)!
𝑛!

{𝑣(S) − 𝑣(S − {𝑖})}. (2)

The formula of (𝑠 − 1)!(𝑛 − 𝑠)!/𝑛! represents the probability
that player 𝑖 join the coalition S−{𝑖} in the process of forming
the entire coalition N with 𝑛 players in random order [16].

2) Nucleolus: For a coalition S, the difference between the
sum of a payoff

∑
𝑖∈S 𝑥𝑖 and the coalition value 𝑣(S) has the



excess that the coalition S has with the payoff vector x as the
following formula.

𝑒(S, x) := 𝑣(S) −
∑︁
𝑖∈S

𝑥𝑖 . (3)

When the excess is large, the sum of each player’s payoffs
is greater than the coalition value. In this situation, these
players do not want to cooperate with each other in S. Let
𝜽 (x) be a vector of excess vectors for the excesses of all
coalitions in order of their size. Next, we consider two vectors
𝑎 = (𝑎1, ..., 𝑎𝐾 ) and 𝑏 = (𝑏1, ..., ..., 𝑏𝐾 ). Now, a vector 𝑎 is
greater than a vector 𝑏 in the sense of lexicographic order if
for some 𝑘 = 1, 2, ...𝐾 exists and the following equation holds.

𝑎𝑖 = 𝑏𝑖 , 𝑖 = 1, ..., 𝑘 − 1 and 𝑎𝑘 > 𝑏𝑘 . (4)

In this case, we write 𝑎 >𝐿 𝑏. Therefore, for a payoff vector x
and an payoff vector y, y is more acceptable than x if 𝜽 (x) >𝐿
𝜽 (y). The Nucleolus of a game is an imputation for which
there is no more acceptable payoff [9]. Nucleolus belongs to
the core if the core is non-empty. This is due to max

𝑆
𝑒(S, y) ≤

0 for the imputation y belonging to the core [15]．
Cooperative game theory is also used for cost allocation and

reward distribution problems; Littlechild proposed the airport
game [17]. The cost of constructing a runway is determined by
the aircraft with the longest runway among the aircraft using
it. The cost of a runway is based on the length of a runway.
Thus, the maximum cost of a runway is shared by coalitional
players.

III. Proposal Method
A. Use Case

Incentive mechanisms are categorized into two categories:
reward-sharing mechanism and auction-based mechanism [18].
The reward-sharing mechanism is that a data consumer pays
rewards to the contributors (e.g., data providers), and the
reward is allocated among contributors according to the degree
of their contributions. The mechanism is applied to the use
case of cooperative tasks. On the other hand, the auction-
based mechanism is that the data consumer offers his/her task
at auction, and the data providers try to make a winning bit.
The mechanism is applied to the competitive use case.

This paper adopts the reward-sharing mechanism for the
pricing design (e.g., incentive mechanism) of the Co-creation
of a Digital Twin City. A concept of the proposed pricing
design is illustrated in Fig. 2. Our mechanism consists of mul-
tiple data consumers and data providers. The data consumers
are requesting point cloud data of a city, and in this case, all
of them are asking for data in the same area. Furthermore,
data providers, who are residents of the city, expect to receive
rewards by sensing point cloud data. In addition, we assume
that data providers preform sensing in the requested area,
whereas the extent of the area covered by each provider is
different. When data consumers purchase the sensed data, an
additional reward is provided for the improved quality of the
point cloud data made possible by the overlapping data of the

Fig. 2. Overview of price design.

providers in the same area. Since a coalition of data providers
receive reward for sensing, this paper determines the allocated
amount gained by each provider under this use case.

B. Data Transaction Model
The key notations in this paper are listed in Table I. The

set of data providers collecting point cloud data is defined
as N := {1, 2, ..., 𝑛}. Let 𝛼𝑖 be the ratio of the area to the
requested area collected by the 𝑖-th data provider, and assume
that 𝛼1 > 𝛼2 > ... > 𝛼𝑛 > 𝛼𝑛+1 := 0. The value of the 𝑛 + 1-th
user is defined as 0. Let S be the set of coalition, meaning
cooperative groups in the game, and define the characteristic
function of the game by the following equation. Note that this
equations are characteristics function for anti-duality game of
airport game [19].

𝑣(S) =

𝛼1 − max

𝑗∉𝑆
𝛼 𝑗 if 1 ∈ S ⊆ N ,

0 if 1 ∉ S.
(5)

where 𝑣(∅) = 0． The coalition value for S involving player
{1} is defined as the total payoff minus the maximum area
ratio of the players outside the coalition, i.e. the incremental
area ratio compared to outside the coalition. By considering
the outside the coalition, the influence of players who do
not participate in the coalition is taken into account. Finally,
coalitions without player {1} have a payoff of zero because
there is no increment.

When a game has an anti-duality game, the core, Nucleolus,
Shapley value of anti-duality game are obtained by reversing

TABLE I
Key Notations.

Symbols Physical Meaning
N = {1, 2, ..., 𝑛} Set of data providers

S ⊆ N Set of coalition of data providers
𝑣(S) Characteristic function

𝜶 = (𝛼1, 𝛼2, ..., 𝛼𝑛 ) Vector of area ratio covered by each player
x = (𝑥1, 𝑥2, ..., 𝑥𝑛 ) Vector of reward sharing ratio
R = {1, 2, ..., 𝑟 } Set of data consumers

𝜷 = (𝛽1, 𝛽2, ..., 𝛽𝑟 ) Vector of consumers’ value with respect to data
𝑇 Total reward

𝑝 × ∑
𝑖∈N 𝛼𝑖 Quality-based pricing
𝜂 Revenue sharing factor
𝑠 Transmission cost



the positive and negative values of the respective values of the
original game. Our system model is similar to the airport game.
However, this game has contrasts in terms of cost allocation
and reward distribution. In general, relationship between cost
allocation problem and reward distribution problem is anti
duality game. Therefore, we use an anti duality game for our
reward distribution problem.

1) Shapley Value: The Shapley value xShp is given by the
following equation.

𝑥
Shp
𝑖

=

𝑛∑︁
𝑖= 𝑗

𝛼𝑖 − 𝛼𝑖+1
𝑖

, 𝑗 ∈ N . (6)

2) Nucleolus: The Nucleolus can minimize the maximum
excess that the data provider feels about the imputation, which
is obtained as xNu = (𝑥Nu

1 , ..., 𝑥Nu
𝑛 ) using the following equation

[15]．

𝑥Nu
𝑖 = 𝑟𝑛+1−𝑘 for𝑘 = 1, . . . , 𝑘 ′ and 𝑖𝑛+𝑘−1 ≤ 𝑖 < 𝑖𝑛+1−(𝑘−1)

with 𝑖𝑛+1 := 𝑛 + 1, 𝑖𝑛+1−𝑘′ := 1, 𝑟𝑛+1 := 0
where:

𝑟𝑛+1−𝑘 = min

(
min

2,...,𝑖𝑛+1−(𝑘−1)−1

[
𝛼𝑖 − 𝛼𝑖𝑛+1−(𝑘−1) + 𝑟𝑛+1−(𝑘−1)

𝑖𝑛+1−(𝑘−1) − 𝑖 + 1

]
,

𝛼1 − 𝛼𝑖𝑛+1−(𝑘−1) + 𝑟𝑛+1−(𝑘−1)

𝑖𝑛+1−(𝑘−1) − 1

)
𝑖𝑛+1−𝑘 = min{arg min(·)} for 𝑘 = 1, . . . , 𝑘 ′ (7)

where 𝑖 = 1, 2, ....𝑛, 𝑛 + 1. Let min[·] be the minimum value
for 𝑖 that satisfies 2 ≤ 𝑖 ≤ 𝑖𝑛+1−(𝑘−1) − 1, and 𝑖𝑛+1−𝑘 be the
minimum 𝑖 ∈ N that achieves min(·) for each of 𝑘 = 1, ..., 𝑘 ′.
For a detailed derivation of Shapley values and Nucleolus, see
the original airport game [17] [19]．

3) Reword Paid by Data Consumers: Let R := {1, 2, ..., 𝑟}
be a set of data consumers who purchase point cloud data.
The total amount of reward 𝑇 paid by the data consumer to
the data provider is given by the following equation, referring
to the conventional price design [12],

𝑇 =
∑︁
𝑗∈R

[𝑝
∑︁
𝑖∈N

(𝛼𝑖) + 𝜂(𝛽 𝑗 − 𝑠)] . (8)

In Eq. (8), 𝑝 refers to a fixed price for data in the total
requested area, 𝜂 is a revenue sharing coefficient used when
data consumers return a part of the profit to data providers,
𝛽 𝑗 is the value of the data that differs by data provider 𝑗 , and
𝑠 is the data transmission cost. The first term corresponds to
a revenue sharing scheme and the second term to a quality-
based pricing scheme, both of which are widely used in the
literature [11] [12] [20]. This pricing method includes as a
special case both pure wholesale pricing (𝑝 = 0) and pure
user-based pricing (𝜂 = 0), and can correspond to a variety of
scenarios. In general, the quality of point cloud data improves
if the areas they are taken overlap in Fig. 2. Therefore, in
this paper, we introduce a novel idea of this overlap for point
cloud data. This idea is given by

∑
𝑖∈N (𝛼𝑖) which means that

the more rewards can be paid to the data provider when the
provider get larger area then other providers.

The amount of rewards y obtained by each data provider is
determined as follows,

y = 𝑇 × x. (9)

The total reward amount 𝑇 is multiplied by the payoff vectors
x, which are the reward distribution ratios determined by game
theory.

IV. Numerical Example

In the numerical example, we assume that three data
providers participate in data collection (𝑛=3). In this case, we
present numerical analysis examples for two percentages of the
requested area that each data provider sensed, 𝜶 = (1, 0.5, 0.2)
and 𝜶 = (1, 0.2, 0.1). We analyze the excess of each payoff
vector according to differences in the size of the area of point
cloud data collected by each data provider. Note that smaller
areas are included in larger areas. Further weighting of impor-
tance within a requirement area is needed, but investigating
such complex alliances is a subject for future work.

In this section, xratio for the payoff vectors determined by
the ratio of 𝜶, xshp for the payoff vectors determined by the
Shapley value, and the payoff vectors determined by Nucleolus
are xnu, and xave for the payoff vectors determined by equal
sharing.

A. Example 1-1：𝜶 = (1, 0.5, 0.2)
The payoff vectors determined by the ratio of 𝜶 and the

payoff vectors determined by equal sharing are respectively as
follows.

xratio = (0.588, 0.294, 0.118), xave = (0.333, 0.333, 0.333).

The payoff vectors for Shapley value and Nucleolus are as
follows from the (6) and (7), respectively.

xshp = (0.717, 0.217, 0.067), xnu = (0.7, 0.2, 0.1).

These three payoff results xratio, xshp, and xnu that satisfy
individual rationality and collective rationality are imputation.
On the other hand, xave does not satisfy imputation condition.
The excess of each coalition over its payoff is defined as Eq.
(3). A list of the payoff for each coalition S and the resulting
excess is shown in Table II.

TABLE II
Excesses for each payoff at 𝜶 = (1, 0.5, 0.2) .

Coalition S 𝑣(S) 𝑒(S, xnu) 𝑒(S, xshp) 𝑒(S, xave) 𝑒(S, xratio)
{1} 0.5 −0.2 −0.217 0.167 −0.088
{2} 0 −0.2 −0.217 −0.333 −0.294
{3} 0 −0.1 −0.067 −0.333 −0.118
{1, 2} 0.8 −0.1 −0.133 0.133 −0.082
{1, 3} 0.5 −0.3 −0.283 −0.167 −0.206
{2, 3} 0 −0.3 −0.283 −0.667 −0.412
{1, 2, 3} 1 0.0 0.0 0.0 0.0



Based on the excess of each coalition shown in Table II, we
show the excess vectors 𝜽 (x). The excess vector is the excess
𝑒(S, x) of each coalition in increasing order.
𝜽 (xratio) = (0.0,−0.082,−0.088,−0.118,−0.206,−0.294,−0.412)
𝜽 (xshp) = (0.0,−0.067,−0.133,−0.217,−0.217,−0.283,−0.283)
𝜽 (xnu) = (0.0,−0.1,−0.1,−0.2,−0.2,−0.3,−0.3)
𝜽 (xave) = (0.167, 0.133, 0.0,−0.167,−0.333,−0.333,−0.667)
Comparing the four excess vectors in the lexicographic order

defined in (4), we obtain 𝜽 (xave) >𝐿 𝜽 (xshp) >𝐿 𝜽 (xratio) >𝐿
𝜽 (xnu).

Since all the elements of the excess vectors 𝜽 (xratio),
𝜽 (xshp), and 𝜽 (xnu) are less than or equal to 0, that is, Eq. (1) is
satisfied, the three imputations belong to the core, we see that
Nucleolus achieves the distribution with the least excess among
the three imputations. Note that the excess in xave is positive in
the coalition {1}, {1, 2}. This means that the coalition {1} is
dissatisfied with the payoff of {2, 3}, and the coalition {1, 2} is
dissatisfied with the payoff of {3}. Since the excess is positive,
we can also say that the coalition rationality is not satisfied
(𝑥1 ≥ 𝑣({1})). In other words, this payoff vector does not
belong to the core. Therefore, the allocation of reward by xave

is not appropriate.

B. Example 1-2：𝜶 = (1, 0.2, 0.1)
The following is an example of numerical analysis for the

case where the range of the collected area of each player is
biased. The payoff vectors determined by the ratio of 𝜶 and the
payoff vectors determined by by equal sharing are respectively
as follows.

xratio = (0.769, 0.154, 0.077), xave = (0.333, 0.333, 0.333).

The payoff vectors for Shapley value and Nucleolus are as
follows from the Eqs. (6) and (7), respectively.

xshp = (0.883, 0.083, 0.033), xnu = (0.875, 0.075, 0.050).

The two payoffs xshp and xnu that satisfy individual rational-
ity and collective rationality are imputation. In this example,
the payoff vectors xratio by collected area, which is the ratio
of 𝛼, are not imputation. Moreover, xave does not satisfy the
imputation condition. A list of the payoffs for each coalition
S and the resulting excess is given in Table III.

Based on the excess of each coalition shown in Table III, we
show the excess vectors 𝜽 (x). The excess vector is the excess
𝑒(S, x) of each coalition in increasing order.

TABLE III
Excesses for each payoff at 𝜶 = (1, 0.2, 0.1) .

Coalition S 𝑣(S) 𝑒(S, xnu) 𝑒(S, xshp) 𝑒(S, xave) 𝑒(S, xratio)
{1} 0.8 −0.075 −0.083 0.467 0.031
{2} 0 −0.075 −0.083 −0.333 −0.154
{3} 0 −0.05 −0.033 −0.333 −0.077
{1, 2} 0.9 −0.05 −0.067 0.233 −0.023
{1, 3} 0.8 −0.125 −0.117 0.133 −0.046
{2, 3} 0 −0.125 −0.117 −0.667 −0.231
{1, 2, 3} 1 0.0 0.0 0.0 0.0

Fig. 3. Amount of reward for each player at 𝜶 = (1, 0.5, 0.2) .

𝜽 (xratio) = (0.031, 0.0,−0.023,−0.046,−0.077,−0.154,−0.231)
𝜽 (xshp) = (0.0,−0.033,−0.067,−0.083,−0.083,−0.117,−0.117)
𝜽 (xnu) = (0.0,−0.05,−0.05,−0.075,−0.075,−0.125,−0.125)
𝜽 (xave) = (0.467, 0.233, 0.133, 0.0,−0.333,−0.333,−0.667)

Comparing the four excess vectors in the lexicographic
order defined in Eq. (4), we obtain 𝜽 (xave) >𝐿 𝜽 (xratio) >𝐿
𝜽 (xshp) >𝐿 𝜽 (xnu).

As discussed in Sec. II, the Shapley value provides a fair
imputation. However, this imputation may result in the user
with a smaller area receiving too little compared to Nucleolus
in terms of minimizing the maximum excess. In Example 1-1,
xratio was an imputation and still belonged to the core, on the
other hand, in Example 1-2, this imputation is not belonged.

This result indicates that a simple reward based on the
area collected may not provide an imputation that satisfies
everyone. Imputations belonging to the core of Shapley values
and nucleolus may be effective in ensuring that everyone is not
dissatisfied.

C. Reward distribution

These payoffs represent the proportion of each data
provider’s reward based on its area in this transaction. Next,
we assume that two data consumers purchase the data (𝑟 = 2).
Here, we set the fixed price of data 𝑝 = 0.15, the revenue
sharing coefficient 𝜂 = 0.3, 𝜷 = (0.8, 0.7), and the transmis-
sion cost 𝑠 = 0.1. The total amount of rewards 𝑇 passed by
the data consumer to the data provider is 0.9 from Eq. (8).

Fig. 3 shows the amount of reward distribution 𝒚 received
by each data provider every payoff vector. The collected area
of the data providers is the same as in Example 1-1. The
distribution method determined by the ratio of 𝜶 is represented
as Ratio, that determined by the Shapley value as Shapley, that
determined by Nucleolus as Nucleolus, and that determined
by the equal split as Average. In co-creative Digital Twin
ecosystem, it is important to design incentives that allow for
a return from data consumers to data providers. Fig. 3 shows
that reward distribution from data consumers can be made in
a way that satisfies data providers.



V. Conclusion
This paper deals with transactions of point cloud data in

co-creative Digital Twin, modeled by coalitional game theory,
and calculates the amount of reward allocated to each data
provider. The area covered by each data provider is set as an
element that characterizes a player, and the amount of reward is
determined by the Shapley value and nucleolus of game theory.
In the analysis of the numerical results, examples are presented
focusing on the equal sharing method, the allocation based on
the area covered, the Shapley value calculated based on the
degree of contribution, and the allocation of the Nucleolus
that minimizes the maximum excess of players.

The analysis showed that the equal sharing method and
the allocation based on the area covered are not appropriate
because they may lead to dissatisfaction among some data
providers, depending on the extent of data collection. Since
this paper only focuses on the area covered for point cloud data
to determine the amount of reward, it is necessary to consider
other factors such as the density of point clouds in the future.
We also plan to consider the intent of data consumers when
setting prices.
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